Skip to main content
Log in

Comparison of three Pediococcus strains for lactic acid production from glucose in the presence of inhibitors generated by acid hydrolysis of lignocellulosic biomass

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Pediococcus acidilactici DQ2, an isolate from corn stover hydrolysate, has been reported to produce more than 100 g/L lactic acid from corn stover hydrolysate. To determine if the outstanding performance is strain-specific or species-specific, three Pediococcus strains, two strains of P. acidilactici (DQ2 and DSM 20284) and one strain of P. pentosaceus (ATCC 25745), were compared for lactic acid production from glucose in the presence of inhibitors often found in lignocellulosic hydrolysates. P. acidilactici DQ2 showed the best results among the three strains tested, suggesting that the excellent performance of DQ2 is a unique feature of this specific strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dworkin, M. (2006) The Genera Pediococcus and Tetragenococcus. pp. 229–266. In: W. H. Holzapfel, C. M. A. P. Franz, and W. Ludwig (eds.). The Prokaryotes. Springer, US Press, NY, USA.

    Google Scholar 

  2. Pederson, C. S. (1949) The Genus Pediococcus. Bacteriol. Rev. 13: 225–232.

    CAS  Google Scholar 

  3. Nampoothiri, K. M., N. R. Nair, and R. P. John (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 101: 8493–8501.

    Article  Google Scholar 

  4. Ryu, H. W., Y. M. Kim, and Y. J. Wee (2012) Influence of operating parameters on concentration and purification of L-lactic acid using electrodialysis. Biotechnol. Bioproc. Eng. 17: 1261–1269.

    Article  CAS  Google Scholar 

  5. Hwang, H. J., S. Y. Lee, S. M. Kim, and S. B. Lee (2011) Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol. Bioproc. Eng. 16: 1231–1239.

    Article  CAS  Google Scholar 

  6. Yoon, H. H. (1997) Simultaneous saccharification and fermentation of cellulose for lactic acid production. Biotechnol. Bioproc. Eng. 2: 101–104.

    Article  Google Scholar 

  7. Shigenobu, M., A. Tomohiro, I. Noriaki, D. Lies, B. F. Jin, H. B. Cui, and O. Mitsuyasu (2004) Production of L-lactic acid from corncob. J. Biosci. Bioeng. 97: 153–157.

    Google Scholar 

  8. Hassan, K. S., B. M. Ana, G. K. Richard, and J. S. Richard (2001) Lactic acid production by simultaneous saccharification and fermentation of alfalfa fiber. J. Biosci. Bioeng. 92: 518–523.

    Google Scholar 

  9. Ronald, H. W. M., R. R. Bakker, M. L. A. Jansen, D. Visser, E. Jong, G. Eggink, and R. A. Weusthui (2008) Lactic acid production from lime-treated wheat straw by Bacillus coagulans: Neutralization of acid by fed-batch addition of alkaline substrate. Appl. Microbiol. Biotechnol. 78: 751–758.

    Article  Google Scholar 

  10. Zhao, K., Q. Qiao, D. Chu, H. Gu, T. H. Dao, J. Zhang, and J. Bao (2012) Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2. Bioresour. Technol. 135: 481–489.

    Article  Google Scholar 

  11. Tanasupawat, S., S. Okada, M. Kozaki, and K. Komogata (1993) Characterization of Pediococcus pentosaceus and Pediococcus acidilactici strains and replacement of the type strain of P. acidilactici with the proposed neotype DSM 20284. Int. J. Syst. Bacteriol. 43: 860–863.

    Article  Google Scholar 

  12. De Man, J. C., M. Rogosa, and M. E. Sharpe (1960) A medium for the cultivation of Lactobcilli. J. Appl. Microbiol. 23: 130–135.

    Google Scholar 

  13. Raj, S. M., C. Rathnasingh, J. E. Jo, and S. Park (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Proc. Biochem. 43: 1440–1446.

    Article  CAS  Google Scholar 

  14. Almeida, J. R. M., T. Modig, A. Petersson, B. Hahn-Hagerdal, G. Liden, and M. F. Gorwa-Grauslund (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340–349.

    Article  CAS  Google Scholar 

  15. Zhang, J., Z. N. Zhu, X. F. Wang, N. Wang, W. Wang, and J. Bao (2010) Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus Amorphotheca resinae ZN1 and the consequent ethanol fermentation. Biotechnol. Biofuels 3: 26.

    Article  Google Scholar 

  16. Almeida, J. R. M., M. Bertilsson, M. F. Gorwa-Grauslund, S. Gorsich, and G. Lidén (2009) Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82: 625–638.

    Article  CAS  Google Scholar 

  17. Zaldivar, J. and L. O. Ingram (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66: 203–210.

    Article  CAS  Google Scholar 

  18. Klinke, H. B., B. K. Ahring, A. S. Schmidt, and A. B. Thomsen (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour. Technol. 82: 15–26.

    Article  CAS  Google Scholar 

  19. Palmqvist, E. and B. Hahn-Hägerdal (2000) Fermentation of lignocellulosic hydrolysates. II. Inhibitors and mechanisms of inhibition. Bioresour. Technol. 74: 25–33.

    Article  CAS  Google Scholar 

  20. Mills, T. Y., N. R. Sandoval, and R. T. Gill (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol. Biofuels 2: 26.

    Article  Google Scholar 

  21. Zhang, J., X. Wang, D. Chu, Y. He, and J. Bao (2011) Dry pretreatment of lignocelluloses with extremely low steam and water usage for bioethanol production. Bioresour. Technol. 102: 4480–4488.

    Article  CAS  Google Scholar 

  22. Almeida, J. R. M., T. Modig, A. Petersson, B. Hähn-Hägerdal, G. Lidén, and M. F. Gorwa-Grauslund (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340–349.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Ashok, S., Seol, E. et al. Comparison of three Pediococcus strains for lactic acid production from glucose in the presence of inhibitors generated by acid hydrolysis of lignocellulosic biomass. Biotechnol Bioproc E 18, 1192–1200 (2013). https://doi.org/10.1007/s12257-013-0360-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0360-y

Keywords

Navigation