Skip to main content
Log in

Expression of bacterial xylose isomerase in Saccharomyces cerevisiae under galactose supplemented condition

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We constructed recombinant Saccharomyces cerevisiae harboring the xylose isomerase (XI) gene isolated from Clostridium phytofermentans to metabolize xylose and use it as a carbon and energy source. In this study, the effect of supplementation using co-substrate such as glucose or galactose on xylose utilization was studied in recombinant S. cerevisiae. Glucose, which is transported with high affinity by the same transport system as is xylose, was not affected by the heterologous expression of XI, thus xylose utilization was not observed in recombinant S. cerevisiae. However, supplemental galactose added to the recombinant S. cerevisiae stimulated xylose utilization as well as the expression of XI protein. Recombinant S. cerevisiae consumed up to 23.48 g/L of xylose when grown in media containing 40 g/L of xylose and supplemented with 20 g/L of galactose. These cells also produced 15.89 g/L of ethanol. Therefore, expression of the bacterial XI in recombinant S. cerevisiae was highly induced by the addition of supplemental galactose as a co-substrate with xylose, and supplemented galactose enabled the yeast strain to grow on xylose and ferment xylose to ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hahn-Hägerdal, B., K. Karhumaa, C. Fonseca, I. Spencer-Martins, and M. F. Gorwa-Grauslund (2007) Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74: 937–953.

    Article  Google Scholar 

  2. Matsushika, A., H. Inoue, T. Kodaki, and S. Sawayama (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives. Appl. Microbiol. Biotechnol. 84: 37–53.

    Article  CAS  Google Scholar 

  3. Van Vleet, J. H. and T. W. Jeffries (2009) Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol. 20: 300–306.

    Article  Google Scholar 

  4. Walfridsson, M., M. Bao, M. Anderlund, G. Lilius, L. Bülow, and B. Hahn-Hägerdal (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62: 4648–4651.

    CAS  Google Scholar 

  5. Kuyper, M., H. R. Harhangi, A. K. Stave, A. A. Winkler, M. S. Jetten, W. T. Laat, J. J. Ridder, H. J. Op den Camp, J. P. van Dijken, and J. T. Pronk (2003) High-level functional expression of a fungal xylose isomerase: The key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res. 4: 69–78.

    Article  CAS  Google Scholar 

  6. Eliasson, A., C. Christensson, C. F. Wahlbom, and B. Hahn-Hagerdal (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 66: 3381–3386.

    Article  CAS  Google Scholar 

  7. Zaldivar, J., J. Nielsen, and L. Olsson (2001) Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56: 17–34.

    Article  CAS  Google Scholar 

  8. Chen, Z., Z. Li, and N. Yu (2010) Expression and secretion of a single-chain sweet protein, monellin, in Saccharomyces cerevisiae by an alpha-factor signal peptide. Biotechnol. Lett. 33: 721–725.

    Article  Google Scholar 

  9. Kotter, P., R. Amore, C. P. Hollenberg, and M. Ciriacy (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr. Genet. 18: 493–500.

    Article  CAS  Google Scholar 

  10. Brat, D., E. Boles, and B. Wiedemann (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 75: 2304–2311.

    Article  CAS  Google Scholar 

  11. Warnick, T. A., B. A. Methe, and S. B. Leschine (2002) Clostridium phytofermentans sp nov., a cellulolytic mesophile from forest soil. Int. J. Syst. Evol. Microbiol. 52: 1155–1160.

    Article  CAS  Google Scholar 

  12. Chung, B. H., D. J. Seo, and S. W. Nam (1999) High-level secretory production of recombinant human lipocortin-I by Saccharomyces cerevisiae. Proc. Biochem. 35: 97–101.

    Article  CAS  Google Scholar 

  13. Sambrook, J., E. F. Fritsch, and T. Maniatis (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  14. Choi, G. W., S. K. Moon, H. W. Kang, J. Min, and B. W. Chung (2009) Simultaneous saccharification and fermentation of sludgecontaining cassava mash for batch and repeated batch production of bioethanol by Saccharomyces cerevisiae CHFY0321. J. Chem. Technol. Biotechnol. 84: 547–553.

    Article  CAS  Google Scholar 

  15. Han, J. H., J. Y. Park, H. W. Kang, G. W. Choi, B. W. Chung, and J. Min (2010) Specific Expression patterns of xyl1, xyl2, and xyl3 in response to different sugars in Pichia stipitis. J. Microbiol. Biotechnol. 20: 946–949.

    Article  CAS  Google Scholar 

  16. Jeffries, T. W. and Y. S. Jin (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495–509.

    Article  CAS  Google Scholar 

  17. Jeffries, T. W. (2006) Engineering yeasts for xylose metabolism. Curr. Opin. Biotech. 17: 320–326.

    Article  CAS  Google Scholar 

  18. Garcia Sanchez, R., B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund (2010) Cross-reactions between engineered xylose and galactose pathways in recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 3: 19.

    Article  Google Scholar 

  19. Ho, N., W. Z. Chen, and A. P. Brainard (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol. 64:1852–1859.

    CAS  Google Scholar 

  20. Maya, D., M. J. Quintero, M. D. Munoz-Centeno, and S. Chavez (2008) Systems for applied gene control in Saccharomyces cerevisiae. Biotechnol. Lett. 30: 979–987.

    Article  CAS  Google Scholar 

  21. Boles, E. and C. P. Hollenberg (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol. Rev. 21: 85–111.

    Article  CAS  Google Scholar 

  22. Hamacher, T., J. Becker, M. Gárdonyi, B. Hahn-Hägerdal, and E. Boles (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiol. 148: 2783–2788.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bong-Woo Chung or Jiho Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JY., Park, D.J., Chung, BW. et al. Expression of bacterial xylose isomerase in Saccharomyces cerevisiae under galactose supplemented condition. Biotechnol Bioproc E 18, 528–532 (2013). https://doi.org/10.1007/s12257-012-0669-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0669-y

Keywords

Navigation