Skip to main content
Log in

Generation of anti-c-met single domain antibody fragment based on human stable frameworks

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The size reduction is an important issue in the biomedical application of antibody and single domain antibody fragment is recognized as very attractive tool. However, it is very time-consuming and laborious to generate the fragment antibody with targeted binding function. Here, we investigated the possibility to prepare single domain antibody (sdAb) by a simple grafting method based on stable human consensus framework sequences. The complementarity determining region sequences in VH domain of anti-c-Met scFv from rabbit were grafted with the human VH3 consensus framework sequences, which generated the anti-c-Met single domain antibody showing almost same binding activity to its scFv form. The generated single domain antibody could be produced as functional form in oxidizing cytoplasm of E. coli, but produced as inactive form in reducing cytoplasm. The structural analysis of the homology models gave us the insight on the stability of the single domain antibody. In this report, we have demonstrated that the very stable human consensus framework sequence can be used for the generation of active anti-c-Met sdAb via complementarity determining regions grafting. We expect that this kind of grafting method for the generation of sdAb may provide us with the opportunities to prepare sdAbs based on the known antibody sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lofblom, J., J. Feldwisch, V. Tolmachev, J. Carlsson, S. Stahl, and F. Y. Frejd (2010) Affibody molecules: Engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584: 2670–2680.

    Article  CAS  Google Scholar 

  2. Friedman, M. and S. Stahl (2009) Engineered affinity proteins for tumour-targeting applications. Biotechnol. Appl. Biochem. 53: 1–29.

    Article  CAS  Google Scholar 

  3. Fernandez, L. A. (2004) Prokaryotic expression of antibodies and affibodies. Curr. Opin. Biotechnol. 15: 364–373.

    Article  CAS  Google Scholar 

  4. Wu, A. M. and P. D. Senter (2005) Arming antibodies: Prospects and challenges for immunoconjugates. Nat. Biotechnol. 23: 1137–1146.

    Article  CAS  Google Scholar 

  5. Baral, T. N., S. Magez, B. Stijlemans, K. Conrath, B. Vanhollebeke, E. Pays, S. Muyldermans, and P. De Baetselier (2006) Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat. Med. 12: 580–584.

    Article  CAS  Google Scholar 

  6. Cortez-Retamozo, V., N. Backmann, P. D. Senter, U. Wernery, P. De Baetselier, S. Muyldermans, and H. Revets (2004) Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 64: 2853–2857.

    Article  CAS  Google Scholar 

  7. Huang, L., G. Reekmans, D. Saerens, J. M. Friedt, F. Frederix, L. Francis, S. Muyldermans, A. Campitelli, and C. Van Hoof (2005) Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays. Biosens. Bioelectron. 21: 483–490.

    Article  CAS  Google Scholar 

  8. Yoon, S., Y. -S. Kim, H. Shim, and J. Chung (2010) Current perspectives on therapeutic antibodies. Biotechnol. Bioproc. Eng. 15: 709–715.

    Article  CAS  Google Scholar 

  9. Lee, B., A. Tajima, J. Kim, Y. Yamagata, and T. Nagamune (2010) Fabrication of protein microarrays using the electrospray deposition (ESD) method: Application of microfluidic chips in immunoassay. Biotechnol. Bioproc. Eng. 15: 145–151.

    Article  CAS  Google Scholar 

  10. Saerens, D., G. H. Ghassabeh, and S. Muyldermans (2008) Single-domain antibodies as building blocks for novel therapeutics. Curr. Opin. Pharmacol. 8: 600–608.

    Article  CAS  Google Scholar 

  11. Holt, L. J., C. Herring, L. S. Jespers, B. P. Woolven, and I. M. Tomlinson (2003) Domain antibodies: Proteins for therapy. Trends Biotechnol. 21: 484–490.

    Article  CAS  Google Scholar 

  12. Kugler, M., C. Stein, M. Schwenkert, D. Saul, L. Vockentanz, T. Huber, S. K. Wetzel, O. Scholz, A. Pluckthun, A. Honegger, and G. H. Fey (2009) Stabilization and humanization of a single-chain Fv antibody fragment specific for human lymphocyte antigen CD19 by designed point mutations and CDR-grafting onto a human framework. Protein Eng. Des. Sel. 22: 135–147.

    Article  Google Scholar 

  13. Ewert, S., A. Honegger, and A. Pluckthun (2004) Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structurebased framework engineering. Methods. 34: 184–199.

    Article  CAS  Google Scholar 

  14. Riechmann, L. and S. Muyldermans (1999) Single domain antibodies: Comparison of camel VH and camelised human VH domains. J. Immunol. Methods. 231: 25–38.

    Article  CAS  Google Scholar 

  15. Edwardraja, S., R. Neelamegam, V. Ramadoss, S. Venkatesan, and S. G. Lee (2010) Redesigning of anti-c-Met single chain Fv antibody for the cytoplasmic folding and its structural analysis. Biotechnol. Bioeng. 106: 367–375.

    CAS  Google Scholar 

  16. Ewert, S., T. Huber, A. Honegger, and A. Pluckthun (2003) Biophysical properties of human antibody variable domains. J. Mol. Biol. 325: 531–553.

    Article  CAS  Google Scholar 

  17. Heo, M. A., S. H. Kim, S. Y. Kim, Y. J. Kim, J. Chung, M. K. Oh, and S. G. Lee (2006) Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr. Purif. 47: 203–209.

    Article  CAS  Google Scholar 

  18. Kim, Y. J., R. Neelamegam, M. A. Heo, S. Edwardraja, H. J. Paik, and S. G. Lee (2008) Improving the productivity of singlechain Fv antibody against c-Met by rearranging the order of its variable domains. J. Microbiol. Biotechnol. 18: 1186–1190.

    CAS  Google Scholar 

  19. Lee, S. G., J. O. Lee, J. K. Yi, and B. G. Kim (2002) Production of cytidine 5’-monophosphate N-acetylneuraminic acid using recombinant Escherichia coli as a biocatalyst. Biotechnol. Bioeng. 80: 516–524.

    Article  CAS  Google Scholar 

  20. Costantini, S., G. Colonna, and A. M. Facchiano (2008) ESBRI: A web server for evaluating salt bridges in proteins. Bioinformation. 3: 137–138.

    Article  Google Scholar 

  21. Nieba, L., A. Honegger, C. Krebber, and A. Pluckthun (1997) Disrupting the hydrophobic patches at the antibody variable/constant domain interface: Improved in vivo folding and physical characterization of an engineered scFv fragment. Protein Eng. 10: 435–444.

    Article  CAS  Google Scholar 

  22. Kumar, S. and R. Nussinov (1999) Salt bridge stability in monomeric proteins. J. Mol. Biol. 293: 1241–1255.

    Article  CAS  Google Scholar 

  23. Conrath, K., C. Vincke, B. Stijlemans, J. Schymkowitz, K. Decanniere, L. Wyns, S. Muyldermans, and R. Loris (2005) Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J. Mol. Biol. 350: 112–125.

    Article  CAS  Google Scholar 

  24. Barthelemy, P. A., H. Raab, B. A. Appleton, C. J. Bond, P. Wu, C. Wiesmann, and S. S. Sidhu (2008) Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J. Biol. Chem. 283: 3639–3654.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bum-Yeol Hwang or Sun-Gu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwardraja, S., Sokalingam, S., Raghunathan, G. et al. Generation of anti-c-met single domain antibody fragment based on human stable frameworks. Biotechnol Bioproc E 17, 1120–1127 (2012). https://doi.org/10.1007/s12257-012-0378-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0378-6

Keywords

Navigation