Skip to main content
Log in

Carbohydrate utilization affects Lactobacillus delbrueckii subsp. lactis 313 cell-enveloped-associated proteinase production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effect of different sugars (glucose, glycerol, maltose, galactose and lactose) on cell-membrane-associated proteinase production by Lactobacillus delbrueckii subsp. lactis 313 (LDL 313) was investigated. The experimental results showed that aside glycerol and galactose, all the other sugars supported high growth levels of LDL 313, with glucose displaying the maximum biomass concentration of 0.85 mg/mL dry cell weight for cells harvested at the mid-exponential phase of ∼12 h after inoculation. The specific proteinase yield, a measure of the rate of proteinase production relative to cell wall biosynthesis, was used to evaluate the preferential degree of proteinase metabolism as induced by the consumption of different sugar substrates by LDL 313. It was found that maltose displayed the highest specific proteinase yield of 12.59 U/mg sugar consumed. Further, molecular differences were observed in the SDS electrophoretic profile of cell surface proteins generated for the different carbon substrates. This is a preliminary study which supports the inference that different sugars stimulate the production of different cell-surface proteins with a significant effect on cell proteinase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsakalidou, E., R. Anastasiou, I. Vandenberghe, J. van Beeumen, and G. Kalantzopoulos (1999) Cell-Wall-Bound Proteinase of Lactobacillus delbrueckii subsp. lactis ACA-DC 178: Characterization and Specicity for β-Casein. Appl. Environ. Microbiol. 65: 2035–2040.

    CAS  Google Scholar 

  2. Espeche Turbay, M. A. B., G. Savoy de Giori, and E. M. Hebert (2009) Release of the Cell-envelope-associated proteinase of Lactobacillus delbrueckii subspecies lactis CRL 581 is dependent upon pH and temperature. J. Agric. Food Chem. 57: 8607–8611.

    Article  CAS  Google Scholar 

  3. Axelsson, L. (2004) Lactic acid bacteria: Classification and physiology, in Lactic Acid Bacteria. pp. 1–66. In: S. Salminen, A. von Wright, and A. Ouwehand (ed.). Microbiological and Functional Aspects. Marcel Dekker, NY.

    Google Scholar 

  4. Kunji, E. R. S., I. Mierau, A. Hagting, B. Poolman, and W. N. Konings (1996) The proteotytic systems of lactic acid bacteria. Anton. Leeuw. 70: 187–221.

    Article  CAS  Google Scholar 

  5. Khalid, N. M. and E. H. Marth (1990) Lactobacilli — Their enzymes and role in ripening and spoilage of cheese: A Review. J. Dairy Sci. 73: 2669–2684.

    Article  CAS  Google Scholar 

  6. Gupta, R., Q. K. Beg, S. Khan, and B. Chauhan (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 60: 381–395.

    Article  CAS  Google Scholar 

  7. Potumarthi, R., S. Ch, and A. Jetty (2007) Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: Effect of aeration and agitation regimes. Biochem. Eng. J. 34: 185–192.

    Article  CAS  Google Scholar 

  8. Titgemeyer, F. and W. Hillen (2002) Global control of sugar metabolism: A Gram-positive solution. Anton. Leeuw. 82: 59–71.

    Article  CAS  Google Scholar 

  9. Schick, J., B. Weber, J. R. Klein, and B. Henrich (1999) PepR1, a CcpA-like transcription regulator of Lactobacillus delbrueckii subsp. lactis. Microb. 145: 3147–3154.

    CAS  Google Scholar 

  10. Kim, J. -H., S. P. Shoemaker, and D. A. Mills (2009) Relaxed control of sugar utilization in Lactobacillus brevis. Microb. 155: 1351–1359.

    Article  CAS  Google Scholar 

  11. Morel, F., J. Frot-Coutaz, D. Aubel, R. Portalier, and D. Atlan (1999) Characterization of a prolidase from Lactobacillus delbrueckii subsp. bulgaricus CNRZ 397 with an unusual regulation of biosynthesis. Microb. 145: 437–446.

    Article  CAS  Google Scholar 

  12. Mahr, K., W. Hillen, and F. Titgemeyer (2000) Carbon catabolite repression in Lactobacillus pentosus: Analysis of the ccpA region. Appl. Environ. Microbiol. 66: 277–283.

    Article  CAS  Google Scholar 

  13. van den Bogaard, P. T. C. (2002) Catabolite Control of Sugar Metabolism in Streptococcus thermophilus, in Laboratory of Microbiology. p. 158. Wageningen University: Wageningen.

    Google Scholar 

  14. Chervaux, C., S. D. Ehrlich, and E. Maguin (2000) Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl. Environ. Microbiol. 66: 5306–5311.

    Article  CAS  Google Scholar 

  15. Schiraldi, C., V. Adduci, V. Valli, C. Maresca, M. Giuliano, M. Lamberti, M. Cartenì, and M. De Rosa (2003) High cell density cultivation of probiotics and lactic acid production. Biotechnol. Bioeng. 82: 213–222.

    Article  CAS  Google Scholar 

  16. Kim, J. -H., D. E. Block, S. P. Shoemaker, and D. A. Mills (2010) Conversion of rice straw to bio-based chemicals: An integrated process using Lactobacillus brevis. Appl. Microbiol. Biotechnol. 86: 1375–1385.

    Article  CAS  Google Scholar 

  17. Fournier, E. (2001) Colorimetric Quantification of Carbohydrates. Current Protocols in Food Analytical Chemistry. pp. E1.1.1–E1.1.8. John Wiley & Sons, Inc.

  18. Exterkate, F. A. (1990) Differences in short peptide-substrate cleavage by two cell-envelope-located serine proteinases of Lactococcus lactis subsp. cremoris are related to secondary binding specificity. Appl. Microbiol. Biotechnol. 33: 401–406.

    Article  CAS  Google Scholar 

  19. Gaudana, S. B., A. S. Dhanani, and T. Bagchi (2010) Probiotic attributes of Lactobacillus strains isolated from food and of human origin. Br. J. Nutr. 103: 1620–1628.

    Article  CAS  Google Scholar 

  20. Bevilacqua, A., M. Corbo, M. Mastromatteo, and M. Sinigaglia (2008) Combined effects of pH, yeast extract, carbohydrates and di-ammonium hydrogen citrate on the biomass production and acidifying ability of a probiotic Lactobacillus plantarum strain, isolated from table olives, in a batch system. World J. Microb. Biotechnol. 24: 1721–1729.

    Article  CAS  Google Scholar 

  21. Veenhoff, L. M., E. H. M. L. Heuberger, and B. Poolman (2001) The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J. 20: 3056–3062.

    Article  CAS  Google Scholar 

  22. van den Bogaard, P. T. C., M. Kleerebezem, O. P. Kuipers, and W. M. de Vos (2000) Control of lactose transport, beta -galactosidase activity, and glycolysis by CcpA in Streptococcus thermophilus: Evidence for carbon catabolite repression by a Nonphosphoenolpyruvate-dependent phosphotransferase system sugar. J. Bacteriol. 182: 5982–5989.

    Article  Google Scholar 

  23. Frey, P. (1996) The Leloir pathway: A mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. The FASEB J. 10: 461–470.

    CAS  Google Scholar 

  24. Bettenbrock, K. and C. -A. Alpert (1998) The gal Genes for the Leloir Pathway of Lactobacillus casei 64H. Appl. Environ. Microbiol. 64: 2013–2019.

    CAS  Google Scholar 

  25. Hickey, M. W., A. J. Hillier, and G. R. Jago (1986) Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli. Appl. Environ. Microbiol. 51: 825–831.

    CAS  Google Scholar 

  26. Hebert, E., G. Mamone, G. Picariello, R. Raya, G. Savoy, P. Ferranti, and F. Addeo (2008) Characterization of the pattern of ás1-and & a-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Appl. Environ. Microbiol. 74: 3682–3689.

    Article  CAS  Google Scholar 

  27. Neubauer, H., E. Glaasker, W. P. Hammes, B. Poolman, and W. N. Konings (1994) Mechanism of maltose uptake and glucose excretion in Lactobacillus sanfrancisco. J. Bacteriol. 176: 3007–3012.

    CAS  Google Scholar 

  28. Schär-Zammaretti, P. and J. Ubbink (2003) The cell wall of lactic acid bacteria: Surface constituents and macromolecular conformations. Biophys. J. 85: 4076–4092.

    Article  Google Scholar 

  29. Otto, A., J. Bernhardt, H. Meyer, M. Schaffer, F. -A. Herbst, J. Siebourg, U. Mäder, M. Lalk, M. Hecker, and D. Becher (2010) Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Nat. Commun. 1: 137.

    Article  Google Scholar 

  30. Schar-Zammaretti, P., M. -L. Dillmann, N. D’Amico, M. Affolter, and J. Ubbink (2005) Influence of fermentation medium composition on physicochemical surface properties of Lactobacillus acidophilus. Appl. Environ. Microbiol. 71: 8165–8173.

    Article  CAS  Google Scholar 

  31. Tymczyszyn, E. E., A. Gómez-Zavaglia, and E. A. Disalvo (2007) Effect of sugars and growth media on the dehydration of Lactobacillus delbrueckii ssp. bulgaricus. J. Appl. Microbiol. 102: 845–851.

    Article  CAS  Google Scholar 

  32. Petranovic, D., E. Guedon, B. Sperandio, C. Delorme, D. Ehrlich, and P. Renault (2004) Intracellular effectors regulating the activity of the Lactococcus lactis CodY pleiotropic transcription regulator. Mol. Microbiol. 53: 613–621.

    Article  CAS  Google Scholar 

  33. Dineen, S. S., S. M. McBride, and A. L. Sonenshein (2010) Integration of metabolism and virulence by Clostridium difficile CodY. J. Bacteriol. 192: 5350–5362.

    Article  CAS  Google Scholar 

  34. Guedon, E., P. Renault, S. D. Ehrlich, and C. Delorme (2001) Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. J. Bacteriol. 183: 3614–3622.

    Article  CAS  Google Scholar 

  35. Sánchez, B., P. Bressollier, S. Chaignepain, J. -M. Schmitter, and M. C. Urdaci (2009) Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus GG. Int. Dairy J. 19: 85–88.

    Article  Google Scholar 

  36. Deepika, G., R. Green, R. Frazier, and D. Charalampopoulos (2009) Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. J. Appl. Microbiol. 107: 1230–1240.

    Article  CAS  Google Scholar 

  37. Lortal, S., J. Van Heijenoort, K. Gruber, and U. B. Sleytr (1992) S-layer of Lactobacillus helveticus ATCC 12046: Isolation, chemical characterization and re-formation after extraction with lithium chloride. J. Gen. Microbiol. 138: 611–618.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Agyei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agyei, D., Danquah, M.K. Carbohydrate utilization affects Lactobacillus delbrueckii subsp. lactis 313 cell-enveloped-associated proteinase production. Biotechnol Bioproc E 17, 787–794 (2012). https://doi.org/10.1007/s12257-012-0106-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0106-2

Keywords

Navigation