Skip to main content
Log in

Coal tar wastewater treatment and electricity production using a membrane-less tubular microbial fuel cell

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We report on treatment of wastewater from a coal tar refinery and electricity production using a mediator-less, membrane-less microbial fuel cell (MFC). pH in the MFC decreased from 7.8 to 7.0 during a 24-day period, whereas 88% of chemical oxygen demand, 57% of sulfate, and 41% of sulfur were removed. The concentration of chemical elements such as aluminum, silver, barium, copper, iron, molybdenum, sulfur, and strontium also decreased. Removal of phenol and 2-methyl phenol exceeded 90%. Benzonitrile and naphthalene were not detected after the MFC treatment. Maximum voltage output and power density of the MFC were 543 mV and 4.5 mW/m2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faison, B. D. (1991) Biological coal conversions. Critic. Rev. Biotechnol. 11: 347–366.

    Article  CAS  Google Scholar 

  2. Caramão, E. B. and I. N. Filho (2004) Quantitative analysis of phenol and alkylphenols in Brazilian coal tar. Quim. Nova 27: 193–195.

    Article  Google Scholar 

  3. Hüppe, P., H. Höke, and D. C. Hempel (1990) Biological treatment of effluents form a coal tar refinery using immobilized biomass. Chem. Eng. Technol. 13: 73–79.

    Article  Google Scholar 

  4. Luthy, R. G., D. A. Dzombak, C. A. Peter, S. B. Roy, A. Ramaswami, D. V. Nakles, and B. R. Nott (1994) Remediating tar-contaminated soils at manufactured gas plant sites-technological challenges. Environ. Sci. Technol. 28: 266–276.

    Article  Google Scholar 

  5. Brown, R. A., M. Jackson, and M. Loucy (1995) A rational approach to the remediation of soil and groundwater at manufactured gas plant sites. Land contamination & Reclamation 3: 1–2.

    Google Scholar 

  6. Nelson, E. C., S. Ghoshal, J. C. Edwards, G. X. Marsh, and R. G. Luthy (1996) Chemical characterization of coal tar-water interfacial films. Environ. Sci. Technol. 30: 1014–1022.

    Article  CAS  Google Scholar 

  7. Lin, M. S., E. T. Permuzic, B. Manowitz, Y. Jeon, and L. Racaniello (1993) Biodegradation of coals. Fuel 72: 1667–1672.

    Article  CAS  Google Scholar 

  8. Stoner, D. L., K. S. Miller, J. K. Polman, and R. B. Wright (1993) Modification of organosulfur compounds and water-soluble coal-derived material by anaerobic microorganisms. Fuel 72: 1651–1656.

    Article  CAS  Google Scholar 

  9. Wang, J. Y., O. Stabnikova, S. S. Lee, and J. H. Tay (2004) Integrated chemical-biological remediation for polycyclic aromatic hydrocarbons contaminated soil. Pract. Periodical of Haz. Toxic. Radioactive Waste Mgmt. 8: 79–83.

    Article  CAS  Google Scholar 

  10. Aust, S. D. and J. A. Bumpus (1995) Process for the degradation of cal tar and its constituents by Phanerochaete chrysosporium. US Patent 5,459,065.

  11. Gallagher, J. R., E. S. Olson, and M. D. Kurz (1998) Enhanced bioremediation of coal-tar- contaminated soil. U. S. Department of Energy.

  12. Choo, Y. F., J. Lee, I. S. Chang, and B. H. Kim (2006) Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate. J. Microbiol. Biotechnol. 16: 1481–1484.

    CAS  Google Scholar 

  13. Park, H. I., U. Mushtaq, D. Perello, I. Lee, S. K. Cho, A. Star, and M. Yun (2007) Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron-beam evaporation. Energy & Fuels 21: 2984–2990.

    Article  CAS  Google Scholar 

  14. Rabaey, K. and W. Verstraete (2005) Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 23: 291–298.

    Article  CAS  Google Scholar 

  15. Park, H. I., D. Sanchez, S. K. Cho, and M. Yun (2008) Bacterial communities based on Pt-deposited electrodes using electronbeam deposition in mediator-less microbial fuel cell. Environ. Sci. Technol. 42: 6243–6249.

    Article  CAS  Google Scholar 

  16. Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim (2004) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Proc. Biochem. 39: 1007–1012.

    Article  CAS  Google Scholar 

  17. Ghangrekar, M. M. and V. B. Shinde (2007) Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour. Technol. 98: 2879–2885.

    Article  CAS  Google Scholar 

  18. Min, B. and B. E. Logan (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38: 5809–5814.

    Article  CAS  Google Scholar 

  19. Zuo, Y., P. C. Maness, and B. E. Logan (2006) Electricity production from stem exploded cornstover biomass. Energy & Fuels 20: 1716–1721.

    Article  CAS  Google Scholar 

  20. Sun, J., Y. Y. Hu, Z. Bi, and Y. Q. Cao (2009) Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single chamber microbial fuel cell. Bioresour. Technol. 100: 3185–3192.

    Article  CAS  Google Scholar 

  21. Rezaei, F., D. Xing, R. Wagner, J. M. Regan, T. L. Richard, and B. E. Logan (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75: 3673–3678.

    Article  CAS  Google Scholar 

  22. Greenman, J., A. Galvez, L. Giusti, and I. Ieropoulos (2009) Electricity from landfill leachate using microbial fuel cells: Comparison with a biological aerated filter. Enz. Microb. Technol. 44: 112–119.

    Article  CAS  Google Scholar 

  23. Feng, Y., X. Wang, B. E. Logan, and H. Lee (2008) Brewery wastewater treatment using air-cathode microbial fuel cells. Appl. Microbiol. Biotechnol. 78: 873–880.

    Article  CAS  Google Scholar 

  24. Huang, L. P. and B. E. Logan (2008) Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Appl. Microbiol. Biotechnol. 80: 349–355.

    Article  CAS  Google Scholar 

  25. Luo, H., G. Liu, and S. Jin (2009) Phenol degradation in microbial fuel cells. Chem. Eng. J. 147: 259–264.

    Article  CAS  Google Scholar 

  26. Pham, H., N. Boon, M. Marzorati, and W. Verstraete (2009) Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Water Res. 43: 2936–2946.

    Article  CAS  Google Scholar 

  27. Borole, A. P., J. R. Mielenz, T. A. Vishnivetskaya, and C. Y. Hamilton (2009) Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels 2:7: 1–14.

    Google Scholar 

  28. Luo, Y., R. Zhang, G. Liu, J. Li, M. Li, and C. Zhang (2010) Electricity generation from indole and microbial community analysis in the microbial fuel cell. J. Hazard. Mat. 176: 759–764.

    Article  CAS  Google Scholar 

  29. Zhang, C., G. Liu, R. Zhang, and H. Luo (2010) Electricity production from and biodegradation of quinoline in the microbial fuel cell. J. Environ. Sci. Health A 45: 250–256.

    Article  CAS  Google Scholar 

  30. Diekert, G. (1991) The acetogenic bacteria. In: A. Balows, H. G. Truper, M. Dworkin, W. Harder, and K. H. Schleifer (eds). The Prokaryotes. Springer: NY.

    Google Scholar 

  31. Hoster, H., T. Iwasita, H. Baumgärtner, and W. Vielstich (2001) Pt-Ru model catalysts for anodic methanol oxidation: Influence of structure and composition on the reactivity. Phys. Chem. Chem. Phys. 3: 337–346.

    Article  CAS  Google Scholar 

  32. APHA, AWWA, WPCF (1998) Standard Methods for the Examination of Water and Wastewater. 19th ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington D. C. USA.

  33. Zhao, F., N. Rahunen, J. R. Varcoe, A. Chandra, R. C. Avignone, A. E. Thumser, and R. C. Slade (2008) Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 42: 4971–4976.

    Article  CAS  Google Scholar 

  34. Lin, M. S. and E. T. Permuzic (1999) Biochemical transformation of coals. US Patent 5,885,825.

  35. Chang, I. S., H. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163–177.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Shin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.I., Wu, C. & Lin, LS. Coal tar wastewater treatment and electricity production using a membrane-less tubular microbial fuel cell. Biotechnol Bioproc E 17, 654–660 (2012). https://doi.org/10.1007/s12257-011-0374-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0374-2

Keywords

Navigation