Skip to main content
Log in

Efficient immobilization technique for enhancement of cellobiose dehydrogenase activity on silica gel

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, cellobiose dehydrogenase (CDH) of Phanerochaete chrysosporium ATCC 32629 was immobilized on silica gel for the further application of CDH in the saccharification process of biomass. To prevent the loss of enzyme activity during enzyme immobilization, the pretreatment of CDH was performed by various pretreatment materials before immobilization. When pretreated enzymes were used in immobilization, the activities of immobilized CDH were higher than non-pretreated CDH even in same amounts of immobilized protein. The specific activity of pretreated immobilized CDH with lactose was about two times higher than that of non-pretreated immobilized CDH. Moreover, the pretreated immobilized CDH showed better reusability than non-pretreated immobilized CDH, with 67.3% of its original activity being retained after 9 reuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mansfield, S. D., E. D. Jong, and J. N. Saddler (1997) Cellobiose dehydrogenase, an active agent in cellulose depolymerization. Appl. Environ. Microbiol. 63: 3804–3809.

    CAS  Google Scholar 

  2. Henriksson, G., V. Sild, I. J. Szabó, G. Pettersson, and G. Johansson (1998) Substrate specificity of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochim. Biophysica Acta 1383: 48–54.

    Article  CAS  Google Scholar 

  3. Henriksson, G., G. Johansson, and G. Pettersson (2000) A critical review of cellobiose dehydrogenases. J. Biotechnol. 78: 93–113.

    Article  CAS  Google Scholar 

  4. Baminger, U., S. S. Subramaniam, V. Renganathan, and D. Haltrich (2001) Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii. Appl. Environ. Microbiol. 67: 1766–1774.

    Article  CAS  Google Scholar 

  5. Roy, B., T. Dumonceaux, A. Koukoulas, and F. Archibald (1996) Purification and characterization of cellobiose dehydrogenases from the white rot fungus Trametes versicolor. Appl. Environ. Microbiol. 62: 4417–4427.

    CAS  Google Scholar 

  6. Bao, W. J., S. N. Usha, and V. Renganathan (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch. Biochem. Biophys. 300: 705–713.

    Article  CAS  Google Scholar 

  7. Habu, N., K. Igarashi, M. Samejima, B. Pettersson, and K. E. Eriksson (1997) Enhanced production of cellobiose dehydrogenase in cultures of Phanerochaete chrysosporium supplemented with bovine calf serum. Biotechnol. Appl. Biochem. 26: 97–102.

    CAS  Google Scholar 

  8. Westermark, U. and K. E. Eriksson (1974) Cellobiose:quinone oxidoreductase, a new wood-degrading enzyme from white-rot fungi. Acta Chem. Scand. 28: 209–214.

    Article  CAS  Google Scholar 

  9. Wilson, M. T., N. Hogg, and G. D. Jones (1990) Reactions of reduced cellobiose oxidase with oxygen. Is cellobiose oxidase primarily an oxidase?. Biochem. J. 270: 265–267.

    CAS  Google Scholar 

  10. Eriksson, K. E. L., N. Habu, and M. Samejima (1993) Recent advances in fungal cellobiose oxidoreductases. Enz. Microb. Technol. 15: 1002–1008.

    Article  CAS  Google Scholar 

  11. Henriksson, G., P. Ander, B. Pettersson, and G. Pettersson (1995) Cellobiose dehydrogenase (cellobiose oxidase) from Phanerochaete chrysosporium as a wood-degrading enzyme. Studies on cellulose, xylan and synthetic lignin. App. Microbiol. Biotechnol. 42: 790–796.

    Article  CAS  Google Scholar 

  12. Bao, W. and V. Renganathan (1992) Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases. FEBS Lett. 302: 77–80.

    Article  CAS  Google Scholar 

  13. Krusa, M., H. Lennholm, and G. Henriksson (2008) Pre-treatment of cellulose by cellobiose dehydrogenase increases the degradation rate by hydrolytic cellulases. Cell Chem. Technol. 41: 105–111.

    Google Scholar 

  14. Baminger, U., B. Nidetzky, K. D. Kulbe, and D. Haltrich (1999) A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase. J. Microbiol. Methods 35: 253–259.

    Article  CAS  Google Scholar 

  15. Lee, D. H., C. H. Park, J. M. Yeo, and S. W. Kim (2006) Lipase immobilization on silica gel using a cross-linking method. J. Ind. Eng. Chem. 12: 777–782.

    CAS  Google Scholar 

  16. Hallberg, B. M., G. Henriksson, G. Pettersson, and C. Divne (2002) Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J. Mol. Biol. 315: 421–434.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Woo Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, E., Song, Y.S., Choi, H.S. et al. Efficient immobilization technique for enhancement of cellobiose dehydrogenase activity on silica gel. Biotechnol Bioproc E 17, 55–59 (2012). https://doi.org/10.1007/s12257-011-0085-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0085-8

Keywords

Navigation