Skip to main content
Log in

Production and characterization of bioflocculants from bacteria isolated from wastewater treatment plant in South Africa

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bioflocculants produced by six bacteria obtained from activated sludge at a wastewater treatment plant were quantified, purified, and characterized. Effects of pH, temperature, cationic salt content, and specific potential inhibitors on the flocculating activities of the bioflocculants were also determined. Bioflocculants produced by the different bacterial isolates ranged between 6.33 and 27.66 g/L in concentration and were composed of both carbohydrate and protein in varying amounts, as well as a relatively high concentration of uronic acid. The flocculating activity of the broth culture increased during the logarithmic phase of bacterial growth with a maximum ranging from 2.395 to 3.709/OD. Optimum pH for the flocculating activity of the bioflocculants was between 8 and 9, with generally higher flocculating activity observed at 28°C. Of the cations tested, Mg2+ and Mn2+ improved flocculating activity up to 5.2 fold. The stability of these bacterial bioflocculants under various environmental and nutritional conditions suggests their possible use in the industries and environmental applications. Therefore, this study details important implications in providing a safer alternative flocculation method for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shih, I. L., L. C. Van, H. G. Lin, and Y. N. Chang (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour. Technol. 78: 267–272.

    Article  CAS  Google Scholar 

  2. Zheng, Y., Z. Ye, X. Fang, Y. Li, and W. Cai (2008) Production and characterization of a bioflocculant produced by Bacillus sp. F19. Bioresour. Technol. 99: 7686–7691.

    Article  CAS  Google Scholar 

  3. Salehizadeh, H. and S. A. Shojaosadati (2001) Extracellular biopolymeric flocculants: Recent trends and biotechnological importance. Biotechnol. Adv. 19: 371–385.

    Article  CAS  Google Scholar 

  4. Salehizadeh, H., M. Vossoughi, and I. Alemzadeh (2000) Some investigations on bioflocculant producing bacteria. Biochem. Eng. 5: 39–44.

    Article  CAS  Google Scholar 

  5. Dearfield, K. L. and C. O. Ambermathy (1988) Acrylamide: Its metabolism, developmental and reproductive effects, genotoxicity and carcinogenicity. Mutat. Res. 195: 45–77.

    CAS  Google Scholar 

  6. Vanhorick, M. and W. Moens (1983) Carcinogen-mediated induction of SV40 DNA amplification is enhanced by acrylamide in Chinese hamster CO60 cells. Carcinogenesis 4: 1459–1463.

    Article  CAS  Google Scholar 

  7. Kowall, N. W., W. W. Pendlebum, J. B. Kessler, D. P. Perl, and M. F. Beal (1989) Aluminium-induced neurofibrillary degeneration affects a subset of neurons in rabbit cerebral cortex, basal forebrain and upper brainstem. Neurosci. 29: 329–337.

    Article  CAS  Google Scholar 

  8. Master, C. L., G. Multhaup, G. Simms, J. Pottgiesser, R. N. Martins, and K. Beyreuther (1985) Neuronal origin of a cerebral amyloid: Neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4: 2757–2763.

    Google Scholar 

  9. Deng, S. B., R. B. Bai, X. M. Hu, and Q. Luo (2003) Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch and wastewater treatment. Appl. Microbiol. Biotechnol. 60: 588–593.

    CAS  Google Scholar 

  10. Kumar, C. G, H. Joo, J. Choi, Y. Koo, and C. Chang (2004) Purification and characterization of an extracellular Bacillus sp. I-450. Enz. Microb. Technol. 34: 673–450.

    Article  CAS  Google Scholar 

  11. Dugan, R. (1984) Flocculation in Biotechnology and Separation System. pp. 337–351. In: Y. A. Attia (ed.). Elsevier Science, Amsterdam.

    Google Scholar 

  12. Dermlim, W., P. Prasertsan, and H. Doelle (1999) Screening and characterization of bioflocculant produced by isolated Klebsiella sp. Appl. Microbiol. Biotechnol. 52: 698–703.

    Article  CAS  Google Scholar 

  13. Nakata, K. and R. Kurane (1999) Production of extracellular polysaccharide bioflocculants by Klebsiella pneumoniae. Biosci. Biotechnol. Biochem. 63: 2064–2068.

    Article  CAS  Google Scholar 

  14. Wang, S., W. Gong, X. Lu, L. Tian, Q. Yue, and B. Gau (2007) Production of a novel bioflocculant by culture of Klebsiella mobilis using dairy wastewater. Biochem. Engin. J. 36: 81–86.

    Article  CAS  Google Scholar 

  15. Kurane, R., K. Hatamochi, T. Kakuno, M. Kiyohara, T. Tajima, M. Hirano, and Y. Taniguchi (1995) Chemical structure of lipid bioflocculant produced by Rhodococcus erythropolis. Agric. Biol. Chem. 59: 1652–1656.

    CAS  Google Scholar 

  16. Takeda, M., R. Kurane, J. Koizumi, and I. Nakamura (1991) A protein bioflocculant produced by Rhodococcus erythropolis. Agric. Biol. Chem. 55: 2663–2664.

    CAS  Google Scholar 

  17. Kurane, R. and H. Matsuyama (1994) Production of bioflocculant by mixed culture. Biosci. Biotechnol. Biochem. 58: 1589–1594.

    Article  CAS  Google Scholar 

  18. Tong, Z., L. Zhe, and Z. Huai-lan (1999) Microbial flocculant and its application in environmental protection. J. Env. Sci. 11: 1–12.

    CAS  Google Scholar 

  19. Toeda, K. and R. Kurane (1991) Microbial flocculant from Alcaligenes cupidus KT201. Agric. Biol. Chem. 55: 2793–2799.

    CAS  Google Scholar 

  20. Salehizadeh, H. And S. A. Shojaosadati (2002) Isolation and characterization of the bioflocculant produced by Bacillus firmus. Biotechnol. Lett. 24: 35–40.

    Article  CAS  Google Scholar 

  21. Suh, H., G. Kwon, C. Lee, H. Kim, H. Oh, and B. Yoon (1997) Characterization of bioflocculant produced by Bacillus sp. DP-152. J. Ferm. Bioeng. 84: 108–112.

    Article  CAS  Google Scholar 

  22. Brosius, J., J. L. Palmer, H. P. Kennedy, and H. F. Nuller (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. 75: 4801–4805.

    Article  CAS  Google Scholar 

  23. Marchesi, J. R., T. Sato, A. J. Weightman, T. A. Martin, J. C. Fry, S. J. Hiom, D. Dymock, and W. G. Wade (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for 16S rRNA. Appl. Env. Microbiol. 64: 795–799.

    CAS  Google Scholar 

  24. Kurane, R., K. Hatamochi, T. Kakuno, M. Kiyohara, K. Kawaguchi, Y. Mizuno, M. Hirano, and Y. Taniguchi (1994) Production of a bioflocculant by Rhodococcus erythropolis S-l grown on alcohols. Biosci. Biotechnol. Biochem. 58: 428–429.

    Article  CAS  Google Scholar 

  25. Chaplin, M. F. (1994) Monosaccharides carbohydrate analysis: A practical approach. pp. 2–6. In M. F. Chaplin and J. F. Kennedy (eds.). Oxford University Press, NY. USA.

    Google Scholar 

  26. Plummer, D. T. (1978) An introduction to practical biochemistry. 2nd ed., pp. 158–159. McGraw-Hill Press, London.

    Google Scholar 

  27. Kurane, R., K. Toeda, K. Takeda, and T. Suzuki (1986) Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric. Biol. Chem. 50: 2309–2313.

    CAS  Google Scholar 

  28. McKinney, R. E. (1956) Biological flocculation. Biological treatment of sewage and industrial wastes. 1: 88–117.

    Google Scholar 

  29. Shimofuruya, H., A. Koide, K. Shirota, T. Tsuji, M. Nakamura, and J. Suzuki (1996) The production of flocculating substance(s) by Streptomyces griseus. Biosci. Biotechnol. Biochem. 60: 498–500.

    Article  CAS  Google Scholar 

  30. Nakamura, J., S. Miyashiro, and Y. Hirose (1976b) Conditions of production of microbial cell flocculant by Aspergillus sojae AJ-7002. Agric. Biol. Chem. 40: 1341–1347.

    CAS  Google Scholar 

  31. Kim, Y. (1993) The production and properties of exo-polysaccharides (POL-IIs) by Bacillus sp. LK-1. Kor. J. Appl. Microbiol. Bioeng. 21: 478–485.

    CAS  Google Scholar 

  32. Yokoi, H., O. Natsuda, J. Hirose, S. Hayashi, and Y. Takasaki (1995) Characteristics of biopolymer flocculant produced by Bacillus sp. PY-90. J. Ferment. Bioeng. 79: 378–380.

    Article  CAS  Google Scholar 

  33. Yokoi, H., T. Arima, S. Hayashi, and Y. Takasaki (1996) Flocculation properties of poly (γ-glutamic acid) produced by Bacillus subtilis. J. Ferment. Bioeng. 82: 84–87.

    Article  CAS  Google Scholar 

  34. Takeda, M., J. Koizumi, H. Matsuoka, and M. Hikuma (1992) Factors affecting the activity of a protein bioflocculant produced by Nocardia amarae. J. Ferment. Bioeng. 74: 408–409.

    Article  CAS  Google Scholar 

  35. Kurane, R. and Y. Nohata (1991) Microbial flocculation of waste liquids and oil emulsion by a bioflocculant from Alcaligenes latus. Agric. Biol. Chem. 55: 1127–1129.

    CAS  Google Scholar 

  36. Napoli, C., F. Dazzo, and D. Hubbell (1975) Production of cellulose microfibrils by Rhizobium. Appl. Microbiol. 30: 123–131.

    CAS  Google Scholar 

  37. Sakka, K. and H. Takahashi (1981) DNA as a flocculation factor in Pseudomonas sp. Agric. Biol. Chem. 45: 2869–2876.

    CAS  Google Scholar 

  38. Nakamura, J., S. Miyashiro, and Y. Hirose (1976) Screening, isolation and some properties of microbial cell flocculants. Agric. Biol. Chem. 40: 377–383.

    CAS  Google Scholar 

  39. Sletmoen, M., G. Maurstad, P. Sikorski, B. S. Paulsen, and B. T. Stokke (2003) Characterization of bacterial polysaccharides: Steps towards single-molecular studies. Carbohydr. Res. 338: 2459–2475.

    Article  CAS  Google Scholar 

  40. Shubo, D., G. Yu, and T. Yen Peng (2005) Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf. B 44: 179–186.

    Article  Google Scholar 

  41. Higgins, M. J. (1995) The roles and interactions of metal salts, proteins, and polysaccharides in the settling and dewatering of activated sludge. Ph.D. Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

    Google Scholar 

  42. Cheng, X. and L. A. Kaplan (2003) Simultaneous analyses of neutral carbohydrates and amino sugars in freshwaters with HPLC-PAD. J. Chromatogr. Sci. 41: 1–5.

    Google Scholar 

  43. Lian, B., Y. Chen, J. Zhao, H. H. Teng, L. Zhu, and S. Yuan (2008) Microbial flocculation by Bacillus mucilaginosus: Applications and mechanisms. Bioresour. Technol. 99: 4825–4831.

    Article  CAS  Google Scholar 

  44. Fujita, M., M. Ike, S. Tachibana, G. Kitada, S. M. Kim, and Z. Inoue (2000) Characterization of a bioflocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids. J. Biosci. Bioeng. 89: 40–46.

    Article  CAS  Google Scholar 

  45. Kurane, R., K. Hatamochi, T. Kakuno, M. Kiyohara, K. Kawaguchi, Y. Mizuno, M. Hirano, and Y. Taniguchi (1994) Purification and characterization of lipid bioflocculant produced Rhodococcus erythropolis. Biosci. Biotechnol. Biochem. 58: 1977–1982.

    Article  CAS  Google Scholar 

  46. Mishra, A., M. Yadav, B. Agarwal, and S. Rajani (2004) Use of polyacrylamide-grafted Plantago psyllium mucilage as a flocculant for treatment of textile wastewater. Colloid Polym. Sci. 282: 722–727.

    Article  CAS  Google Scholar 

  47. Faust, S. D. and O. M. Aly (1998) Chemistry of water treatment. 2nd ed., p. 581. CRC Press LLC, Lewis Publishers, NY, USA.

    Google Scholar 

  48. Zouboulis, A. I., X. Chaib, and I. A. Katsoyiannis (2004) The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. J. Env. Manag. 70: 35–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademola O. Olaniran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buthelezi, S.P., Olaniran, A.O. & Pillay, B. Production and characterization of bioflocculants from bacteria isolated from wastewater treatment plant in South Africa. Biotechnol Bioproc E 15, 874–881 (2010). https://doi.org/10.1007/s12257-009-3002-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3002-7

Keywords

Navigation