Skip to main content
Log in

Enhancement of recombinant antibody production in HEK 293E cells by WPRE

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In an effort to make a fast and convenient approach for efficient production of recombinant antibody, transient gene expression was performed in human embryonic kidney 293E (HEK293E) cells, which have been widely used as a mammalian host for transient expression of recombinant proteins. Woodchuck hepatitis virus post-transcriptional regulation element (WPRE) was employed to increase the antibody production. Under the influence of WPRE, the antibody production was increased by 5.5-fold through the enhancement of total mRNA levels of HC and LC, and the efficient export of nuclear mRNA into the cytoplasm. Using WPRE, 1.9 mg of cumulative recombinant antibody was obtained in transiently transfected adherent HEK293E cells from one 100 mm dish transfection with 10 mL medium exchange every 3 days for 24 days of cultivation. In addition, the highest recombinant antibody concentration of 81 mg/L was obtained. This simple and efficient approach of antibody production is expected to provide a sufficient amount of antibody for screening experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, W., S. Singh, D. L. Zeng, K. King, and S. Nema (2007) Antibody structure, instability, and formulation. J. Pharm. Sci. 96: 1–26.

    Article  CAS  Google Scholar 

  2. Lee, J. C., D. Y. Kim, D. J. Oh, and H. N. Chang (2008) Two-stage depth filter perfusion culture for recombinant antibody production by recombinant Chinese hamster ovary cell. Biotechnol. Bioprocess Eng. 13: 560–565.

    Article  CAS  Google Scholar 

  3. Kim, M. S., W. H. Kim, and G. M. Lee (2008) Characterization of site-specific recombination mediated by Cre recombinase during the development of erythropoietin producing CHO cell lines. Biotechnol. Bioprocess Eng. 13: 418–423.

    Article  CAS  Google Scholar 

  4. Baldi, L., D. L. Hacker, M. Adam, and F. M. Wurm (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol. Lett. 29: 677–684.

    Article  CAS  Google Scholar 

  5. Wurm, F. and A. Bernard (1999) Large-scale transient expression in mammalian cells for recombinant protein production. Curr. Opin. Biotechnol. 10: 156–159.

    Article  CAS  Google Scholar 

  6. Yates, J. L., N. Warren, and B. Sugden (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812–815.

    Article  CAS  Google Scholar 

  7. Ambinder, R. F., M. A. Mullen, Y. N. Chang, G. S. Hayward, and S. D. Hayward (1991) Functional domains of Epstein-Barr virus nuclear antigen EBNA-1. J. Virol. 65: 1466–1478.

    CAS  Google Scholar 

  8. Langle-Rouault, F., V. Patzel, A. Benavente, M. Taillez, N. Silvestre, A. Bompard, G. Sczakiel, E. Jacobs, and K. Rittner (1998) Up to 100-fold increase of apparent gene expression in the presence of Epstein-Barr virus oriP sequences and EBNA1: implications of the nuclear import of plasmids. J. Virol. 72: 6181–6185.

    CAS  Google Scholar 

  9. Reisman, D. and B. Sugden (1986) Trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1. Mol. Cell. Biol. 6: 3838–3846.

    CAS  Google Scholar 

  10. Donello, J. E., J. E. Loeb, and T. J. Hope (1998) Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J. Virol. 72: 5085–5092.

    CAS  Google Scholar 

  11. Schambach, A., H. Wodrich, M. Hildinger, J. Bohne, H. G. Krausslich, and C. Baum (2000) Context dependence of different modules for posttranscriptional enhancement of gene expression from retroviral vectors. Mol. Ther. 2: 435–445.

    Article  CAS  Google Scholar 

  12. Rosser, M. P., W. Xia, S. Hartsell, M. McCaman, Y. Zhu, S. Wang, S. Harvey, P. Bringmann, and R. R. Cobb (2005) Transient transfection of CHO-K1-S using serumfree medium in suspension: a rapid mammalian protein expression system. Protein Expr. Purif. 40: 237–243.

    Article  CAS  Google Scholar 

  13. Kreppel, F. and S. Kochanek (2004) Long-term transgene expression in proliferating cells mediated by episomally maintained high-capacity adenovirus vectors. J. Virol. 78: 9–22.

    Article  CAS  Google Scholar 

  14. Shan, L., L. Wang, J. Yin, P. Zhong, and J. Zhong (2006) An OriP/EBNA-1-based baculovirus vector with prolonged and enhanced transgene expression. J. Gene Med. 8: 1400–1406.

    Article  CAS  Google Scholar 

  15. Wulhfard, S., S. Tissot, S. Bouchet, J. Cevey, M. De Jesus, D. L. Hacker, and F. M. Wurm (2008) Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol. Prog. 24: 458–465.

    Article  CAS  Google Scholar 

  16. Kim, S. J., M. H. Jang, J. T. Stapleton, S. O. Yoon, K. S. Kim, E. S. Jeon, and H. J. Hong (2004) Neutralizing human monoclonal antibodies to hepatitis A virus recovered by phage display. Virology 318: 598–607.

    Article  CAS  Google Scholar 

  17. Wang, Y., W. Zhu, and D. E. Levy (2006) Nuclear and cytoplasmic mRNA quantification by SYBR green based real-time RT-PCR. Methods 39: 356–362.

    Article  CAS  Google Scholar 

  18. Kim, N. S. and G. M. Lee (2002) Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: effect of Bcl-2 overexpression. J. Biotechnol. 95: 237–248.

    Article  CAS  Google Scholar 

  19. Klein, R., B. Ruttkowski, E. Knapp, B. Salmons, W. H. Gunzburg, and C. Hohenadl (2006) WPRE-mediated enhancement of gene expression is promoter and cell line specific. Gene 372: 153–161.

    Article  CAS  Google Scholar 

  20. Leitzgen, K., M. R. Knittler, and I. G. Haas (1997) Assembly of immunoglobulin light chains as a prerequisite for secretion. A model for oligomerization-dependent subunit folding. J. Biol. Chem. 272: 3117–3123.

    Article  CAS  Google Scholar 

  21. Schlatter, S., S. H. Stansfield, D. M. Dinnis, A. J. Racher, J. R. Birch, and D. C. James (2005) On the optimal ratio of heavy to light chain genes for efficient recombinant antibody production by CHO cells. Biotechnol. Prog. 21: 122–133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Jeong Hong.

Additional information

The first two authors equally contributed to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KS., Kim, M.S., Moon, J.H. et al. Enhancement of recombinant antibody production in HEK 293E cells by WPRE. Biotechnol Bioproc E 14, 633–638 (2009). https://doi.org/10.1007/s12257-008-0221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0221-2

Keywords

Navigation