Skip to main content
Log in

Significance of genetic polymorphisms in hematological malignancies: implications of risk factors for prognosis and relapse

  • review
  • Published:
memo - Magazine of European Medical Oncology Aims and scope Submit manuscript

Summary

Background

Leukemia is one of the most important hematological malignancies. Despite progress in leukemia therapy, recurrence is still one of the main reasons for treatment failure. Recently, gene polymorphisms have been the focus of attention as important factors in the recurrence of leukemia.

Methods

Relevant literature was identified by an electronic database search (1996–2018) of English-language literature using the terms “polymorphism”, “leukemia”, “prognosis”, “lymphoma”, and “relapse.”

Results

Polymorphisms of genes involved in cell cycle, apoptosis, immune system, and drug metabolism enzymes have been associated with progression of hematological malignancies. These genetic changes can be associated with relapse and unfavorable clinical outcomes through potential impact on leukemic cells survival.

Conclusion

Considering the fact that gene polymorphisms could significantly affect pathophysiology of hematological malignancies, these genetic changes may be considered as potential prognostic biomarkers and therapeutic agents in these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Saki N, Abroun S, Hagh MF, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J. 2011;13(3):131.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Han F, Tan Y, Cui W, Dong L, Li W. Novel insights into etiologies of leukemia: a HuGE review and meta-analysis of CYP1A1 polymorphisms and leukemia risk. Am J Epidemiol. 2013;178(4):493–507.

    Article  PubMed  Google Scholar 

  3. Krentz S, Hof J, Mendioroz A, Vaggopoulou R, Dörge P, Lottaz C, Engelmann J, Groeneveld T, Körner G, Seeger K. Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B‑cell precursor acute lymphoblastic leukemia. Leukemia. 2013;27(2):295.

    Article  CAS  PubMed  Google Scholar 

  4. Esmatabadi MJD, Bakhshinejad B, Motlagh FM, Babashah S, Sadeghizadeh M. Therapeutic resistance and cancer recurrence mechanisms: unfolding the story of tumour coming back. J Biosci. 2016;41(3):497–506.

    Article  CAS  PubMed  Google Scholar 

  5. Zhu Y, Foroni L, McQuaker I, Papaioannou M, Haynes A, Russell H. Mechanisms of relapse in acute leukaemia: involvement of p53 mutated subclones in disease progression in acute lymphoblastic leukaemia. Br J Cancer. 1999;79(7–8):1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cristóbal I, Garcia-Orti L, Cirauqui C, Cortes-Lavaud X, García-Sánchez MA, Jose’Calasanz M, Odero MD. Overexpression of SET is a recurrent event associated with poor outcome that contributes to protein phosphatase 2A inhibition in acute myeloid leukemia. Haematologica. 2011;97(4):543–50.

    Article  CAS  PubMed  Google Scholar 

  7. Moriyama T, Relling MV, Yang JJ. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood. 2015;125(26):3988–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirschner-Schwabe R, Lottaz C, Tödling J, Rhein P, Karawajew L, Eckert C, von Stackelberg A, Ungethüm U, Kostka D, Kulozik AE. Expression of late cell cycle genes and an increased proliferative capacity characterize very early relapse of childhood acute lymphoblastic leukemia. Clin Cancer Res. 2006;12(15):4553–61.

    Article  CAS  PubMed  Google Scholar 

  9. Karathanasis NV, Choumerianou DM, Kalmanti M. Gene polymorphisms in childhood ALL. Pediatr Blood Cancer. 2009;52(3):318–23.

    Article  PubMed  Google Scholar 

  10. Valibeigi B, Amirghofran Z, Golmoghaddam H, Hajihosseini R, Kamazani FM. Fas gene variants in childhood acute lymphoblastic leukemia and association with prognosis. Pathol Oncol Res. 2014;20(2):367–74.

    Article  CAS  PubMed  Google Scholar 

  11. Babor F, Manser AR, Fischer JC, Scherenschlich N, Enczmann J, Chazara O, Moffett A, Borkhardt A, Meisel R, Uhrberg M. The KIR ligand C2 is associated with increased susceptibility to childhood acute lymphoblastic leukemia and confers an elevated risk for late relapse. Blood. 2014;124(14):2248–51.

    Article  CAS  PubMed  Google Scholar 

  12. Stanulla M, Schrappe M, Brechlin AM, Zimmermann M, Welte K. Polymorphisms within glutathione S‑transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B‑cell precursor acute lymphoblastic leukemia: a case-control study. Blood. 2000;95(4):1222–8.

    CAS  PubMed  Google Scholar 

  13. Hajizamani S, Shahjahani M, Shahrabi S, Saki N. MicroRNAs as prognostic biomarker and relapse indicator in leukemia. Clin Transl Oncol. 2017;19(8):951–60.

    Article  CAS  PubMed  Google Scholar 

  14. Hessels AC, Rutgers A, Sanders JSF, Stegeman CA. Thiopurine methyltransferase genotype and activity cannot predict outcomes of azathioprine maintenance therapy for antineutrophil cytoplasmic antibody associated vasculitis: a retrospective cohort study. PLoS ONE. 2018;13(4):e195524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujita K, Sasaki Y. Pharmacogenomics in drug-metabolizing enzymes catalyzing anticancer drugs for personalized cancer chemotherapy. Curr Drug Metab. 2007;8(6):554–62.

    Article  CAS  PubMed  Google Scholar 

  16. Vujkovic M, Kershenbaum A, Wray L, McWilliams T, Cannon S, Devidas M, Stork L, Aplenc R. Associations between genetic variants in folate and drug metabolizing pathways and relapse risk in pediatric acute lymphoid leukemia on CCG–1952. Leuk Res Rep. 2015;4(2):47–50.

    PubMed  PubMed Central  Google Scholar 

  17. Evans WE. Pharmacogenetics of thiopurine S‑methyltransferase and thiopurine therapy. Ther Drug Monit. 2004;26(2):186–91.

    Article  CAS  PubMed  Google Scholar 

  18. Fredriksen Å, Meyer K, Ueland PM, Vollset SE, Grotmol T, Schneede J. Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum Mutat. 2007;28(9):856–65.

    Article  CAS  PubMed  Google Scholar 

  19. O’Leary VB, Mills JL, Pangilinan F, Kirke PN, Cox C, Conley M, Weiler A, Peng K, Shane B, Scott JM. Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab. 2005;85(3):220–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ketterer B. Protective role of glutathione and glutathione transferases in mutagenesis and carcinogenesis. Mutat Res. 1988;202(2):343–61.

    Article  CAS  PubMed  Google Scholar 

  21. Krajinovic M, Labuda D, Sinnett D. Glutathione S‑transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenet Genomics. 2002;12(8):655–8.

    Article  CAS  Google Scholar 

  22. Reilly R, McNulty H, Pentieva K, Strain J, Ward M. MTHFR 677TT genotype and disease risk: is there a modulating role for B‑vitamins? Proc Nutr Soc. 2014;73(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  23. Sepe DM, McWilliams T, Chen J, Kershenbaum A, Zhao H, La M, Devidas M, Lange B, Rebbeck TR, Aplenc R. Germline genetic variation and treatment response on CCG-1891. Pediatr Blood Cancer. 2012;58(5):695–700.

    Article  PubMed  Google Scholar 

  24. Hanson NQ, Aras Ö, Yang F, Tsai MY. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: incidence and effect of combined genotypes on plasma fasting and post-methionine load homocysteine in vascular disease. Clin Chem. 2001;47(4):661–6.

    CAS  PubMed  Google Scholar 

  25. Niedzielska E, Węcławek-Tompol J, Matkowska-Kocjan A, Chybicka A. The influence of genetic RFC1, MS and MTHFR polymorphisms on the risk of acute lymphoblastic leukemia relapse in children and the adverse effects of methotrexate. Adv Clin Exp Med. 2013;22(4):579–84.

    PubMed  Google Scholar 

  26. Candelaria M, Ojeda J, Gutiérrez-Hernández O, Taja-Chayeb L, Vidal-Millán S, Dueñas-González A. G80A single nucleotide polymorphism in reduced folate carrier-1 gene in a mexican population and its impact on survival in patients with acute lymphoblastic leukemia. Rev Invest Clin. 2016;68(3):154–62.

    CAS  PubMed  Google Scholar 

  27. Liu S‑G, Gao C, Zhang R‑D, Jiao Y, Cui L, Li W‑J, Chen Z‑P, Wu M‑Y, Zheng H‑Y, Zhao X‑X. FPGS rs1544105 polymorphism is associated with treatment outcome in pediatric B‑cell precursor acute lymphoblastic leukemia. Cancer Cell Int. 2013;13(1):107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gómez-Gómez Y, Organista-Nava J, Rangel-Rodriguez CA, Illades-Aguiar B, Moreno-Godínez ME, Alarcón-Romero LDC, Leyva-Vázquez MA. Effect of folylpolyglutamate synthase A22G polymorphism on the risk and survival of patients with acute lymphoblastic leukemia. Oncol Lett. 2014;8(2):731–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perera FP. Molecular epidemiology: insights into cancer susceptibility, risk assessment, and prevention. J Natl Cancer Inst. 1996;88(8):496–509.

    Article  CAS  PubMed  Google Scholar 

  30. Hengstler J, Arand M, Herrero M, Oesch F. Polymorphisms of N‑acetyltransferases, glutathione S‑transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility. In: Genes and environment in cancer. Heidelberg, Berlin, New York: Springer; 1998. pp. 47–85.

    Chapter  Google Scholar 

  31. Iyer L, Ratain M. Pharmacogenetics and cancer chemotherapy. Eur J Cancer. 1998;34(10):1493–9.

    Article  CAS  PubMed  Google Scholar 

  32. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 2016;76(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  33. Leonardi DB, Abbate M, Riccheri MC, Nuñez M, Alfonso G, Gueron G, De Siervi A, Vazquez E, Cotignola J. Improving risk stratification of patients with childhood acute lymphoblastic leukemia: glutathione-S-transferases polymorphisms are associated with increased risk of relapse. Oncotarget. 2017;8(1):110.

    Article  PubMed  Google Scholar 

  34. Lauten M, Matthias T, Stanulla M, Beger C, Welte K, Schrappe M. Association of initial response to prednisone treatment in childhood acute lymphoblastic leukaemia and polymorphisms within the tumour necrosis factor and the interleukin-10 genes. Leukemia. 2002;16(8):1437.

    Article  CAS  PubMed  Google Scholar 

  35. de Deus DMV, de Souza PRE, Muniz MTC. High FLT3 expression and IL10 (G1082A) polymorphism in poor overall survival in calla acute lymphoblastic leukemia. Mol Biol Rep. 2013;40(2):1609–13.

    Article  CAS  PubMed  Google Scholar 

  36. Lu Y, Kham S, Ariffin H, Oei A, Lin H, Tan A, Quah T, Yeoh A. Host genetic variants of ABCB1 and IL15 influence treatment outcome in paediatric acute lymphoblastic leukaemia. Br J Cancer. 2014;110(6):1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gagné V, Rousseau J, Labuda M, Sharif-Askari B, Brukner I, Laverdiere C, Ceppi F, Sallan SE, Silverman LB, Neuberg D. Bim polymorphisms: influence on function and response to treatment in children with acute lymphoblastic leukemia. Clin Cancer Res. 2013;19(18):5240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eisfeld A‑K, Marcucci G, Liyanarachchi S, Döhner K, Schwind S, Maharry K, Leffel B, Döhner H, Radmacher MD, Bloomfield CD. Heritable polymorphism predisposes to high BAALC expression in acute myeloid leukemia. Proc Natl Acad Sci USA. 2012;109(17):6668–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nadimi M, Rahgozar S, Moafi A, Tavassoli M, Tanha HM. Evaluation of rs62527607 [GT] single nucleotide polymorphism located in BAALC gene in children with acute leukemia using mismatch PCR-RFLP. Cancer Genet. 2016;209(7):348–53.

    Article  CAS  PubMed  Google Scholar 

  40. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Davidsson J, Paulsson K, Lindgren D, Lilljebjörn H, Chaplin T, Forestier E, Andersen M, Nordgren A, Rosenquist R, Fioretos T. Relapsed childhood high hyperdiploid acute lymphoblastic leukemia: presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations. Leukemia. 2010;24(5):924.

    Article  CAS  PubMed  Google Scholar 

  42. Mosaad YM, Elashery R, Darwish A, Sharaf Eldein OA, Barakat T, Marouf S, Abou El-Khier NT, Youssef LF, Fawzy IM. GATA3 rs3824662 gene polymorphism as possible risk factor in a cohort of Egyptian patients with pediatric acute lymphoblastic leukemia and its prognostic impact. Leuk Lymphoma. 2017;58(3):689–98.

    Article  CAS  PubMed  Google Scholar 

  43. Shahrabi S, Behzad MM, Jaseb K, Saki N. Thrombocytopenia in leukemia: pathogenesis and prognosis. Histol Histopathol. 2018;33(9):895–908.

    PubMed  Google Scholar 

  44. Long J, Fang S, Dai Q, Liu X, Zhu W, Wang S. The Wilms Tumor-1 (WT1) rs16754 polymorphism is a prognostic factor in acute myeloid leukemia (AML): a meta-analysis. Oncotarget. 2016;7(22):32079.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Megías-Vericat J, Rojas L, Herrero M, Bosó V, Montesinos P, Moscardó F, Poveda J, Sanz MÁ, Aliño S. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: a systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015;15(2):109.

    Article  CAS  PubMed  Google Scholar 

  46. Amaki J, Onizuka M, Ohmachi K, Aoyama Y, Hara R, Ichiki A, Kawai H, Sato A, Miyamoto M, Toyosaki M. Single nucleotide polymorphisms of cytarabine metabolic genes influence clinical outcome in acute myeloid leukemia patients receiving high-dose cytarabine therapy. Int J Hematol. 2015;101(6):543–53.

    Article  CAS  PubMed  Google Scholar 

  47. Wan H, Zhu J, Chen F, Xiao F, Huang H, Han X, Zhong L, Zhong H, Xu L, Ni B. SLC29A1 single nucleotide polymorphisms as independent prognostic predictors for survival of patients with acute myeloid leukemia: an in vitro study. J Exp Clin Cancer Res. 2014;33(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang D‑Y, Yuan X‑Q, Yan H, Cao S, Zhang W, Li X‑L, Zeng H, Chen X‑P. Association between DCK 35708 T> C variation and clinical outcomes of acute myeloid leukemia in South Chinese patients. Pharmacogenomics. 2016;17(14):1519–31.

    Article  CAS  PubMed  Google Scholar 

  49. Cheong HS, Koh Y, Ahn K‑S, Lee C, Shin HD, Yoon S‑S. NT5C3 polymorphisms and outcome of first induction chemotherapy in acute myeloid leukemia. Pharmacogenet Genomics. 2014;24(9):436–41.

    Article  CAS  PubMed  Google Scholar 

  50. Illmer T, Schuler US, Thiede C, Schwarz UI, Kim RB, Gotthard S, Freund D, Schäkel U, Ehninger G, Schaich M. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res. 2002;62(17):4955–62.

    CAS  PubMed  Google Scholar 

  51. Mhaidat NM, Alshogran OY, Khabour OF, Alzoubi KH, Matalka II, Haddadin WJ, Mahasneh IO, Aldaher AN. Multi-drug resistance 1 genetic polymorphism and prediction of chemotherapy response in Hodgkin’s lymphoma. J Exp Clin Cancer Res. 2011;30(1):68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mortland L, Alonzo TA, Walter RB, Gerbing RB, Mitra AK, Pollard JA, Loken MR, Hirsch B, Raimondi S, Franklin J. Clinical significance of CD33 nonsynonymous single-nucleotide polymorphisms in pediatric patients with acute myeloid leukemia treated with Gemtuzumab-Ozogamicin-containing chemotherapy. Clin Cancer Res. 2013;19(6):1620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim M, Kim J, Kim JR, Han E, Park J, Lim J, Kim Y, Han K, Kim H‑J, Min W‑S. FLT3 expression and IL10 promoter polymorphism in acute myeloid leukemia with RUNX1-RUNX1T1. Mol Biol Rep. 2015;42(2):451–6.

    Article  CAS  PubMed  Google Scholar 

  54. Ho PA, Kopecky KJ, Alonzo TA, Gerbing RB, Miller KL, Kuhn J, Zeng R, Ries RE, Raimondi SC, Hirsch BA. Prognostic implications of the IDH1 synonymous SNP rs11554137 in pediatric/adult AML: a report from the Children’s Oncology Group and SWOG. Blood. 2011;118(17):4561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2(9):647.

    Article  CAS  PubMed  Google Scholar 

  56. Cingeetham A, Vuree S, Dunna NR, Gorre M, Nanchari SR, Edathara PM, Meka P, Annamaneni S, Digumarthi R, Sinha S. Influence of BCL2-938C> A and BAX-248G> A promoter polymorphisms in the development of AML: case-control study from South India. Tumor Biol. 2015;36(10):7967–76.

    Article  CAS  Google Scholar 

  57. Niavarani A, Horswell S, Sadri R, Bonnet D. The Wilms tumor-1 (WT1) rs2234593 variant is a prognostic factor in normal karyotype acute myeloid leukemia. Ann Hematol. 2016;95(2):179–90.

    Article  CAS  PubMed  Google Scholar 

  58. Damm F, Heuser M, Morgan M, Yun H, Großhennig A, Göhring G, Schlegelberger B, Döhner K, Ottmann O, Lübbert M. Single nucleotide polymorphism in the mutational hotspot of WT1 predicts a favorable outcome in patients with cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2009;28(4):578–85.

    Article  CAS  PubMed  Google Scholar 

  59. Dolz S, García P, Llop M, Fuster Ó, Luna I, Ibáñez M, Gómez I, López M, Such E, Cervera J. Study of the S427G polymorphism and of MYBL2 variants in patients with acute myeloid leukemia. Leuk Lymphoma. 2016;57(2):429–35.

    Article  CAS  PubMed  Google Scholar 

  60. Nückel H, Frey UH, Bau M, Sellmann L, Stanelle J, Dürig J, Jöckel K‑H, Dührsen U, Siffert W. Association of a novel regulatory polymorphism (−938C> A) in the BCL2 gene promoter with disease progression and survival in chronic lymphocytic leukemia. Blood. 2007;109(1):290–7.

    Article  CAS  PubMed  Google Scholar 

  61. Shahjahani M, Mohammadiasl J, Noroozi F, Seghatoleslami M, Shahrabi S, Saba F, Saki N. Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell Oncol. 2015;38(2):93–109.

    Article  CAS  Google Scholar 

  62. Van Bockstaele F, Pede V, Janssens A, Callewaert F, Offner F, Verhasselt B, Philippé J. Lipoprotein lipase mRNA expression in whole blood is a prognostic marker in B cell chronic lymphocytic leukemia. Clin Chem. 2007;53(2):204–12.

    Article  CAS  PubMed  Google Scholar 

  63. Heintel D, Kienle D, Shehata M, Kröber A, Kroemer E, Schwarzinger I, Mitteregger D, Le T, Gleiss A, Mannhalter C. High expression of lipoprotein lipase in poor risk B‑cell chronic lymphocytic leukemia. Leukemia. 2005;19(7):1216.

    Article  CAS  PubMed  Google Scholar 

  64. Rombout A, Stamatopoulos B, Lagneaux L, Lust S, Offner F, Naessens E, Vanderstraeten H, Verhasselt B, Philippé J. Lipoprotein lipase SNPs rs13702 and rs301 correlate with clinical outcome in chronic lymphocytic leukemia patients. PLoS ONE. 2015;10(3):e121526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Staff PO. Correction: lipoprotein lipase SNPs rs13702 and rs301 correlate with clinical outcome in chronic lymphocytic leukemia patients. PLoS ONE. 2015;10(6):e131029.

    Article  CAS  Google Scholar 

  66. Nückel H, Frey U, Aral N, Dürig J, Dührsen U, Siffert W. The CC genotype of the C825T polymorphism of the G protein β3 gene (GNB3) is associated with a high relapse rate in patients with chronic lymphocytic leukaemia. Leuk Lymphoma. 2003;44(10):1739–43.

    Article  CAS  PubMed  Google Scholar 

  67. Penna G, Allegra A, Alonci A, Aguennouz M, Garufi A, Cannavo A, Gerace D, Alibrandi A, Musolino C. MDR-1 polymorphisms (G2677T and C3435T) in B‑chronic lymphocytic leukemia: an impact on susceptibility and prognosis. Med Oncol. 2011;28(4):1549–54.

    Article  CAS  PubMed  Google Scholar 

  68. Lordelo G, Miranda-Vilela A, Akimoto A, Alves P, Hiragi C, Nonino A, Daldegan M, Klautau-Guimarães M, Grisolia C. Association between methylene tetrahydrofolate reductase and glutathione S‑transferase M1 gene polymorphisms and chronic myeloid leukemia in a Brazilian population. Genet Mol Res. 2012;11(2):1013–26.

    Article  CAS  PubMed  Google Scholar 

  69. Kassogue Y, Quachouh M, Dehbi H, Quessar A, Benchekroun S, Nadifi S. Functional polymorphism of CYP2B6 G15631T is associated with hematologic and cytogenetic response in chronic myeloid leukemia patients treated with imatinib. Med Oncol. 2014;31(1):782.

    Article  CAS  PubMed  Google Scholar 

  70. Kim DHD, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K, Messner HA, Lipton JH. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res. 2009;15(14):4750–8.

    Article  CAS  PubMed  Google Scholar 

  71. Koren-Michowitz M, Buzaglo Z, Ribakovsky E, Schwarz M, Pessach I, Shimoni A, Beider K, Amariglio N, Ie Coutre P, Nagler A. OCT 1 genetic variants are associated with long term outcomes in imatinib treated chronic myeloid leukemia patients. Eur J Haematol. 2014;92(4):283–8.

    Article  CAS  PubMed  Google Scholar 

  72. Pehlivan M, Sahin HH, Pehlivan S, Ozdilli K, Kaynar L, Oguz FS, Sever T, Yilmaz M, Eser B, Ogret YD. Prognostic importance of single-nucleotide polymorphisms in IL-6, IL-10, TGF-β1, IFN-γ, and TNF-α genes in chronic phase chronic myeloid leukemia. Genet Test Mol Biomarkers. 2014;18(6):403–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Amirzargar A, Bagheri M, Ghavamzadeh A, Alimoghadam K, Khosravi F, Rezaei N, Moheydin M, Ansaripour B, Moradi B, Nikbin B. Cytokine gene polymorphism in Iranian patients with chronic myelogenous leukaemia. Int J Immunogenet. 2005;32(3):167–71.

    Article  CAS  PubMed  Google Scholar 

  74. Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K, Mitsiades C, Munshi NC, Richardson PG, Carrasco RD. Bortezomib induces canonical nuclear factor-κB activation in multiple myeloma cells. Blood. 2009;114(5):1046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Azizidoost S, Bavarsad MS, Bavarsad MS, Shahrabi S, Jaseb K, Rahim F, Shahjahani M, Saba F, Ghorbani M, Saki N. The role of notch signaling in bone marrow niche. Hematology. 2015;20(2):93–103.

    Article  CAS  PubMed  Google Scholar 

  76. Varga G, Mikala G, Andrikovics H, Koszarska M, Balassa K, Ádám E, Kozma A, Tordai A, Masszi T. NFKB 1–94ins/del ATTG polymorphism is a novel prognostic marker in first line-treated multiple myeloma. Br J Haematol. 2015;168(5):679–88.

    Article  CAS  PubMed  Google Scholar 

  77. Neben K, Mytilineos J, Moehler TM, Preiss A, Kraemer A, Ho AD, Opelz G, Goldschmidt H. Polymorphisms of the tumor necrosis factor-α gene promoter predict for outcome after thalidomide therapy in relapsed and refractory multiple myeloma. Blood. 2002;100(6):2263–5.

    CAS  PubMed  Google Scholar 

  78. Andersen NF, Vogel U, Klausen TW, Gimsing P, Gregersen H, Abildgaard N, Vangsted AJ. Vascular endothelial growth factor (VEGF) gene polymorphisms may influence the efficacy of thalidomide in multiple myeloma. Int J Cancer. 2012;131(5):E636–E42.

    Article  CAS  PubMed  Google Scholar 

  79. Ortega MM, Honma HN, Zambon L, Lorand-Metze I, Costa FF, De Souza CA, Lima CS. GSTM1 and codon 72 P53 polymorphism in multiple myeloma. Ann Hematol. 2007;86(11):815–9.

    Article  CAS  PubMed  Google Scholar 

  80. Hattori Y, Ikeda Y, Suzuki Y, Ichikawa D, Matsushita M. Codon 72 polymorphism of TP 53 gene is a novel prognostic marker for therapy in multiple myeloma. Br J Haematol. 2014;165(5):728–31.

    Article  CAS  PubMed  Google Scholar 

  81. Fabre C, Mimura N, Bobb K, Kong S‑Y, Gorgun G, Cirstea D, Hu Y, Minami J, Ohguchi H, Zhang J. Dual inhibition of canonical and non-canonical NF-κB pathways demonstrates significant anti-tumor activities in multiple myeloma. Clin Cancer Res. 2012;18(17):4669–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Du J, Huo J, Shi J, Yuan Z, Zhang C, Fu W, Jiang H, Yi Q, Hou J. Polymorphisms of NF-κB family genes are associated with development of multiple myeloma and treatment outcome in patients undergoing bortezomib-based regimens. Haematologica. 2011;96(5):729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Armitage JO, Gascoyne RD, Lunning MA, Cavalli F. Non-hodgkin lymphoma. Lancet. 2017;390(10091):298–310.

    Article  PubMed  Google Scholar 

  84. Han X, Zheng T, Foss FM, Lan Q, Holford TR, Rothman N, Ma S, Zhang Y. Genetic polymorphisms in the metabolic pathway and non-Hodgkin lymphoma survival. Am J Hematol. 2010;85(1):51–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kremer J. Methotrexate pharmacogenomics. Ann Rheum Dis. 2006;65(9):1121–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. D’Angelo V, Ramaglia M, Iannotta A, Francese M, Pota E, Affinita MC, Pecoraro G, Indolfi C, Di Martino M, Di Pinto D. Influence of methylenetetrahydrofolate reductase gene polymorphisms on the outcome of pediatric patients with non-Hodgkin lymphoma treated with high-dose methotrexate. Leuk Lymphoma. 2013;54(12):2639–44.

    Article  CAS  PubMed  Google Scholar 

  87. Ni Y, Yin G, Xiao Z, Fan L, Wang L, Wu Y, Wu H, Qian S, Xu W, Li J. MDR1 polymorphisms have an impact on the prognosis of Chinese diffuse large B cell lymphoma patients. Tumor Biol. 2016;37(1):1237–44.

    Article  CAS  Google Scholar 

  88. Nedoszytko B, Olszewska B, Roszkiewicz J, Glen J, Zabłotna M, Ługowska-Umer H, Nowicki R, Sokołowska-Wojdyło M. The role of polymorphism of interleukin-2,-10,-13 and TNF-α genes in cutaneous T‑cell lymphoma pathogenesis. Postepy Dermatol Alergol. 2016;33(6):429.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gao S, Zhu G, Lin Y, Fan X, Qian P, Zhu J, Yu Y. Tumor necrosis factor-308 polymorphism with the risk and prognosis of non-Hodgkin lymphomas: a meta-analysis study. Onco Targets Ther. 2016;9:1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cerhan JR, Liu-Mares W, Fredericksen ZS, Novak AJ, Cunningham JM, Kay NE, Dogan A, Liebow M, Wang AH, Call TG. Genetic variation in tumor necrosis factor and the nuclear factor-κB canonical pathway and risk of non-Hodgkin’s lymphoma. Cancer Epidemiol Biomarkers Prev. 2008;17(11):3161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Aschebrook-Kilfoy B, Zheng T, Foss F, Ma S, Han X, Lan Q, Holford T, Chen Y, Leaderer B, Rothman N. Polymorphisms in immune function genes and non-Hodgkin lymphoma survival. J Cancer Surviv. 2012;6(1):102–14.

    Article  PubMed  Google Scholar 

  92. Zhang W, Wang X, Li J, Duan M, Zhou D. Fcgamma receptor IIIA polymorphisms and efficacy of rituximab therapy on Chinese diffuse large B‑cell lymphoma. Chin Med J. 2010;123(2):198–202.

    CAS  PubMed  Google Scholar 

  93. Burkhardt B, Yavuz D, Zimmermann M, Schieferstein J, Kabickova E, Attarbaschi A, Lisfeld J, Reiter A, Makarova O, Worch J. Impact of Fc gamma-receptor polymorphisms on the response to rituximab treatment in children and adolescents with mature B cell lymphoma/leukemia. Ann Hematol. 2016;95(9):1503–12.

    Article  CAS  PubMed  Google Scholar 

  94. Mishima Y, Terui Y, Mishima Y, Kuniyoshi R, Matsusaka S, Mikuniya M, Kojima K, Hatake K. High reproducible ADCC analysis revealed a competitive relation between ADCC and CDC and differences between FcγRllla polymorphism. Int Immunol. 2012;24(8):477–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in Shafa Hospital and Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Shahrabi Ph.D.

Ethics declarations

Conflict of interest

A.A. Asnafi, N. Farshchi, A. Khosravi, N. Ketabchi, M.M. Behzad, and S. Shahrabi declare that they have no competing interests.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Authors’ contributions

S. Shahrabi conceived the manuscript and revised it. A.A. Asnafi, N. Farshchi, A. Khosravi, N. Ketabchi, and M.M. Behzad wrote the manuscript and prepared the tables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asnafi, A.A., Farshchi, N., Khosravi, A. et al. Significance of genetic polymorphisms in hematological malignancies: implications of risk factors for prognosis and relapse. memo 11, 330–344 (2018). https://doi.org/10.1007/s12254-018-0446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12254-018-0446-5

Keywords

Navigation