Skip to main content

Advertisement

Log in

Identifying Secondary Mutations in Chinese Patients with Imatinib-Resistant Gastrointestinal Stromal Tumors (GISTs) by Next Generation Sequencing (NGS)

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

The aim of this study was to characterize secondary kinase mutations in Chinese patients with imatinib-resistant gastrointestinal stromal tumors (GISTs). Mutations in receptor tyrosine kinase (KIT; exons 9, 11, 13, 14, 17, and 18) and platelet-derived growth factor-alpha (PDGFRA; exons 12, 14, and 18) were analyzed by direct sequencing. After imatinib treatment, 425 cancer-related target genes were analyzed by next generation sequencing (NGS) in imatinib-resistant patients. Correlation of sequencing results with clinicopathologic features were analyzed. We identified 320 patients with secondary acquired resistance. We determined that 65.63% (210/320) of resistant patients had secondary KIT mutations in exon 13 (n = 134), exon 14 (n = 10), or exon 17 (n = 66), and 4.38% (14/320) had additional PDGFRA mutations in exon 14 (n = 3) or exon 18 (n = 11). All secondary KIT mutations were missense mutations and were mostly located in kinase domains. Ninety-six imatinib-resistant GIST patients did not have secondary KIT or PDGFRA mutations. Common independent mutation events were found in retinoblastoma protein 1 (RB1) (18/96 cases), SWI/SNF-related matrix associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) (16/96 cases), and myc-associated factor X (MAX) (10/96 cases). RB1 or SMARCB1 mutations coexisted with activation of other oncogenes in 6 or 15 cases, respectively. Multiple mutations were also seen in cases with MAX mutations. These mutations are frequently associated with clinicopathological factors. Secondary mutations of KIT/PDGFRA were the most important contributors in GISTs developing resistance to imatinib treatment. Additional genetic events including RB1, SMARCB1, and MAX except secondary KIT/PDGFRA mutations are the most common for GISTs to evolve into resistant disease. Clinical assessment of the effect of these mutations may benefit existing risk assessment models and selection of adjuvant therapies in GIST patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Di Vita M, Zanghì A, Cavallaro A et al (2019) Gastric GIST and prognostic models. Which is the best to predict survival after surgery? Ann Ital Chir 90:31–40

    PubMed  Google Scholar 

  2. Kalfusová A, Kodet R (2017) Molecular mechanisms of primary and secondary resistance, molecular-genetic features and characteristics of KIT/PDGFRA non-mutated GISTs. Cesk Patol 53(4):167–173

    PubMed  Google Scholar 

  3. Miettinen M, Monihan JM, Sarlomo-Rikala M et al (1999) Gastrointestinal stromal tumors/smooth muscle tumors (GISTs) primary in the omentum and mesentery: clinicopathologic and immunohistochemical study of 26 cases. Am J Surg Pathol 23(9):1109–1118

    Article  CAS  PubMed  Google Scholar 

  4. Li J (2016) Molecular mechanism of gastrointestinal stromal tumors and progress in drug research. Zhonghua Wei Chang Wai Ke Za Zhi 19(11):1316–1320

    PubMed  Google Scholar 

  5. Corless CL, Schroeder A, Griffith D et al (2005) PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 23(23):5357–5364

    Article  CAS  PubMed  Google Scholar 

  6. Lasota J, Miettinen M (2006) KIT and PDGFRA mutations in gastrointestinal stromal tumors (GISTs). Semin Diagn Pathol 23(2):91–102

    Article  PubMed  Google Scholar 

  7. Li J, Zhang H, Lu Y et al (2015) Presence of PDGFRA and DOG1 mutations in gastrointestinal stromal tumors among Chinese population. Int J Clin Exp Pathol 8(5):5721–5726

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmad F, Lad P, Bhatia S et al (2015) Molecular spectrum of c-KIT and PDGFRA gene mutations in gastro intestinal stromal tumor: determination of frequency, distribution pattern and identification of novel mutations in Indian patients. Med Oncol 32(1):424

    Article  CAS  PubMed  Google Scholar 

  9. Rossi G, Valli R, Bertolini F et al (2005) PDGFR expression in differential diagnosis between KIT-negative gastrointestinal stromal tumours and other primary soft-tissue tumours of the gastrointestinal tract. Histopathology. 46(5):522–531

    Article  CAS  PubMed  Google Scholar 

  10. Heinrich MC, Corless CL, Duensing A et al (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 299(5607):708–710

    Article  CAS  PubMed  Google Scholar 

  11. Kang HJ, Nam SW, Kim H et al (2005) Correlation of KIT and platelet-derived growth factor receptor alpha mutations with gene activation and expression profiles in gastrointestinal stromal tumors. Oncogene. 24(6):1066–1074

    Article  CAS  PubMed  Google Scholar 

  12. von Mehren M, Joensuu H (2018) Gastrointestinal stromal tumors. J Clin Oncol 36(2):136–143

    Article  Google Scholar 

  13. Saito S, Nakata K, Kajiura S et al (2013) Long-term follow-up outcome of imatinib mesylate treatment for recurrent and unresectable gastrointestinal stromal tumors. Digestion 87(1):47–52

    Article  CAS  PubMed  Google Scholar 

  14. Rodriquenz MG, Rossi S, Ricci R et al (2016) Gastrointestinal stromal tumors (GISTs) and second malignancies: a novel “sentinel tumor”? A monoinstitutional, STROBE-compliant observational analysis. Medicine (Baltimore) 95(38):e4718

    Article  Google Scholar 

  15. Comandone A, Boglione A (2015) The importance of mutational status in prognosis and therapy of GIST. Recenti Prog Med 106(1):17–22

    PubMed  Google Scholar 

  16. Huang WK, Akçakaya P, Gangaev A et al (2018) miR-125a-5p regulation increases phosphorylation of FAK that contributes to imatinib resistance in gastrointestinal stromal tumors. Exp Cell Res 371(1):287–296

    Article  CAS  PubMed  Google Scholar 

  17. Boyar MS, Taub RN (2007) New strategies for treating GIST when imatinib fails. Cancer Investig 25(5):328–335

    Article  CAS  Google Scholar 

  18. Atay S, Wilkey DW, Milhem M et al (2018) Insights into the proteome of gastrointestinal stromal tumors-derived exosomes reveals new potential diagnostic biomarkers. Mol Cell Proteomics 17(3):495–515

    Article  CAS  PubMed  Google Scholar 

  19. Serrano C, Mariño-Enríquez A, Tao DL et al (2019) Complementary activity of tyrosine kinase inhibitors against secondary kit mutations in imatinib-resistant gastrointestinal stromal tumours. Br J Cancer 120(6):612–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsai HJ, Jiaang WT, Shih NY et al (2018) BPR1J373, a novel multitargeted kinase inhibitor, effectively suppresses the growth of gastrointestinal stromal tumor. Cancer Sci 109(11):3591–3601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Ye Y, Wang J et al (2017) Chinese consensus guidelines for diagnosis and management of gastrointestinal stromal tumor. Chin J Cancer Res 29(4):281–293

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McKenna A, Hanna M, Banks E et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNAsequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van der Auwera GA, Carneiro MO, Hartl C et al (2013) From FastQ data to high confidence variant calls: the genome analysis toolkit best practicespipeline. Curr Protoc Bioinformatics 43:11.10.1–11.1033

    Article  Google Scholar 

  26. Koboldt DC, Zhang Q, Larson DE et al (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exomesequencing. Genome Res 22(3):568–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robinson JT, Thorvaldsdóttir H, Wenger AM et al (2017) Variant review with the integrative genomics viewer. Cancer Res 77(21):e31–e34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Amarasinghe KC, Li J, Hunter SM et al (2014) Inferring copy number and genotype in tumour exome data. BMC Genomics 15:732

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen W, Kuang Y, Qiu HB et al (2017) Dual targeting of insulin receptor and KIT in Imatinib-resistant gastrointestinal stromal tumors. Cancer Res 77(18):5107–5117

    Article  CAS  PubMed  Google Scholar 

  30. Obata Y, Horikawa K, Shiina I et al (2018) Oncogenic Kit signalling on the Golgi is suppressed by blocking secretory trafficking with M-COPA in gastrointestinal stromal tumours. Cancer Lett 415:1–10

    Article  CAS  PubMed  Google Scholar 

  31. Boichuk S, Galembikova A, Dunaev P et al (2017) A novel receptor tyrosine kinase switch promotes gastrointestinal stromal tumor drug resistance. Molecules. 5:22(12)

    Google Scholar 

  32. Heinrich MC, Maki RG, Corless CL et al (2008) Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol 26(33):5352–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liegl B, Kepten I, Le C et al (2008) Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 216(1):64–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu K, Liu X, Jiang Z et al (2017) Discovery of a highly selective KIT kinase primary V559D mutant inhibitor for gastrointestinal stromal tumors (GISTs). Oncotarget. 8(67):111110–111118

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tamborini E, Pricl S, Negri T et al (2006) Functional analyses and molecular modeling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients. Oncogene. 25(45):6140–6146

    Article  CAS  PubMed  Google Scholar 

  36. Guo T, Agaram NP, Wong GC et al (2007) Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor. Clin Cancer Res 13(16):4874–4881

    Article  CAS  PubMed  Google Scholar 

  37. Antonescu CR, Besmer P, Guo T et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 11:4182–4190

    Article  CAS  PubMed  Google Scholar 

  38. Lau J, Zhou Q, Sutton SE et al (2014) Inhibition of c-Kit is not required for reversal of hyperglycemia by imatinib in NOD mice. PLoS One 9(1):e84900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pricl S, Fermeglia M, Ferrone M et al (2005) T315I-mutated Bcr-Abl in chronic myeloid leukemia and imatinib: insights from a computational study. Mol Cancer Ther 4(8):1167–1174

    Article  CAS  PubMed  Google Scholar 

  40. Tutone M, Lauria A, Almerico AM (2011) Study of the role of “gatekeeper” mutations V654A and T670I of c-kit kinase in the interaction withinhibitors by means mixed molecular dynamics/docking approach. Bioinformation. 7(6):296–298

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ihle MA, Huss S, Jeske W et al (2018) Expression of cell cycle regulators and frequency of TP53 mutations in high risk gastrointestinal stromal tumors prior to adjuvant imatinib treatment. PLoS One 13(2):e0193048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haller F, Gunawan B, von Heydebreck A et al (2005) Prognostic role of E2F1 and members of the CDKN2A network in gastrointestinal stromal tumors. Clin Cancer Res 11(18):6589–6597

    Article  CAS  PubMed  Google Scholar 

  43. Wang X, Lee RS, Alver BH et al (2017) SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet 49(2):289–295

    Article  CAS  PubMed  Google Scholar 

  44. Lu C, Allis CD (2017) SWI/SNF complex in cancer. Nat Genet 49(2):178–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakayama RT, Pulice JL, Valencia AM et al (2017) SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Genet 49(11):1613–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kohashi K, Yamamoto H, Yamada Y et al (2018) SWI/SNF chromatin-remodeling complex status in SMARCB1/INI1-preserved epithelioid sarcoma. Am J Surg Pathol 42(3):312–318

    Article  PubMed  Google Scholar 

  47. Smith MJ, Walker JA, Shen Y et al (2012) Expression of SMARCB1 (INI1) mutations in familial schwannomatosis. Hum Mol Genet 21(24):5239–5245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beliakova-Bethell N, Mukim A, White CH et al (2019) Histone deacetylase inhibitors induce complex host responses that contribute to differential potencies of these compounds in HIV reactivation. J Biol Chem 294(14):5576–5589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mora-Blanco EL, Mishina Y, Tillman EJ et al (2014) Activation of β-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene. 33(7):933–938

    Article  CAS  PubMed  Google Scholar 

  50. Kim KH, Roberts CW (2014) Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth. Cancer Genetics 207(9):365–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang CM, Lee TE, Syed SA et al (2016) Hedgehog pathway dysregulation contributes to the pathogenesis of human gastrointestinal stromal tumors via GLI-mediated activation of KIT expression. Oncotarget. 7(48):78226–78241

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lo WW, Wunder JS, Dickson BC et al (2014) Involvement and targeted intervention of dysregulated Hedgehog signaling in osteosarcoma. Cancer. 120(4):537–547

    Article  CAS  PubMed  Google Scholar 

  53. Szczepny A, Rogers S, Jayasekara WSN et al (2017) The role of canonical and non-canonical Hedgehog signaling in tumor progression in a mouse model of small cell lung cancer. Oncogene. 36(39):5544–5550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pelczar P, Zibat A, van Dop WA et al (2013) Inactivation of Patched1 in mice leads to development of gastrointestinal stromal-like tumors that express Pdgfrα but not kit. Gastroenterology 144(1):134–144. e6

    Article  CAS  PubMed  Google Scholar 

  55. Castell A, Yan Q, Fawkner K et al (2018) A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci Rep 8(1)

  56. Melnik S, Werth N, Boeuf S et al (2019) Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells. Stem Cell Res Ther 10(1):73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boyd SR, Young DW (2019) Max-imizing the Attenuation of Myc Using Small Molecules. Trends Pharmacol Sci 40(9):608–612

  58. Struntz NB, Chen A, Deutzmann A et al (2019) Stabilization of the Max Homodimer with a Small Molecule Attenuates Myc-Driven Transcription. Cell Chem Biol 26(5):711–723.e14

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients, physicians, clinical trial nurses, laboratory staff, and technicians for their participation in this study.

Funding

This study was funded by the Natural Science Foundation of the Liaoning province [grant number 20180530045].

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Jiang Du, Yang Liu. Performed the experiments: Si Wang, Rui Wang and Si-Yao Wang. Analyzed the data: Qiang Han, Hong-Tao Xu and Peng Yang. Contributed reagents/materials/ analysis tools: Jiang Du, Hong-Tao Xu, and Yang Liu. Wrote the paper: All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Approval and Informed Consent

This study was approved by the Ethics committee of the First Affiliated Hospital of China Medical University and was performed according to the principles of the Declaration of Helsinki. Written informed consents were obtained from the patients in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wang, S., Wang, R. et al. Identifying Secondary Mutations in Chinese Patients with Imatinib-Resistant Gastrointestinal Stromal Tumors (GISTs) by Next Generation Sequencing (NGS). Pathol. Oncol. Res. 26, 91–100 (2020). https://doi.org/10.1007/s12253-019-00770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-019-00770-6

Keywords

Navigation