Skip to main content

Advertisement

Log in

Metabolic Phase I (CYPs) and Phase II (GSTs) Gene Polymorphisms and Their Interaction with Environmental Factors in Nasopharyngeal Cancer from the Ethnic Population of Northeast India

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Multiple genetic and environmental factors and their interaction are believed to contribute in the pathogenesis of Nasopharyngeal Cancer (NPC). We investigate the role of Metabolic Phase I (CYPs) and Phase II (GSTs) gene polymorphisms, gene-gene and gene-environmental interaction in modulating the susceptibility to NPC in Northeast India. To determine the association of metabolic gene polymorphisms and environmental habits, 123 cases and 189 controls blood/swab samples were used for PCR and confirmed by Sanger sequencing. Analysis for GSTM1 and GSTT1 gene polymorphism was done by multiplex PCR. The T3801C in the 3′- flanking region of CYP1A1 gene was detected by PCR-RFLP method. The Logistic regression analysis was used to estimate odds ratios (OR) and 95% confidence intervals (95% CI). The GSTM1 null genotype alone (OR = 2.76) was significantly associated with NPC risk (P < 0.0001). The combinations of GSTM1 null and GSTT1 null genotypes also higher, 3.77 fold (P < 0.0001), risk of NPC, while GSTM1 null genotype along with CYP1A1 T3801C TC + CC genotype had 3.22 (P = 0.001) fold risk. The most remarkable risk was seen among individual carrying GSTM1 null, GSTT1 null genotypes and CYP1A1 T3801C TC + CC genotypes (OR = 5.71, P = 0.001). Further; analyses demonstrate an enhanced risk of NPC in smoked meat (OR = 5.56, P < 0.0001) and fermented fish consumers (OR = 5.73, P < 0.0001) carrying GSTM1 null genotype. An elevated risk of NPC was noted in smokers (OR = 12.67, P < 0.0001) and chewers (OR = 5.68, P < 0.0001) with GSTM1 null genotype. However, smokers had the highest risk of NPC among individuals carrying GSTT1 null genotype (OR = 4.46, P = 0.001) or CYP1A1 T3801C TC + CC genotype (OR = 7.13, P < 0.0001). The association of null genotypes and mutations of metabolic neutralizing genes along with the environmental habits (tobacco smokers and chewers, smoke meat, fermented fishes) can be used as a possible biomarker for early detection and preventive measure of NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chang ET, Adami HO (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev 15(10):1765–1777. https://doi.org/10.1158/1055-9965.EPI-06-0353

    Article  CAS  Google Scholar 

  2. Kataki AC, Simons MJ, Das AK, Sharma K, Mehra NK (2011) Nasopharyngeal carcinoma in the Northeastern states of India. Chin J Cancer 30(2):106–113

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ghosh SK, Singh AS, Mondal R, Kapfo W, Khamo V, Singh YI (2014) Dysfunction of mitochondria due to environmental carcinogens in nasopharyngeal carcinoma in the ethnic group of northeast Indian population. Tumour Biol J Int Soc Oncodev Biol Med. https://doi.org/10.1007/s13277-014-1897-x

  4. Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VM, Zhang G, Lo KW (2014) Etiological factors of nasopharyngeal carcinoma. Oral Oncol 50(5):330–338. https://doi.org/10.1016/j.oraloncology.2014.02.006

    Article  PubMed  Google Scholar 

  5. Jia WH, Luo XY, Feng BJ, Ruan HL, Bei JX, Liu WS, Qin HD, Feng QS, Chen LZ, Yao SY, Zeng YX (2010) Traditional Cantonese diet and nasopharyngeal carcinoma risk: a large-scale case-control study in Guangdong, China. BMC Cancer 10:446. https://doi.org/10.1186/1471-2407-10-446

    Article  PubMed  PubMed Central  Google Scholar 

  6. Belbaraka R, Lalya I, Boulaamane L, Tazi M, Benjaafar N, Errihani H (2013) Dietary risk factors of undifferenced nasopharyngeal carcinoma: a case-control study. Tunis Med 91(6):406–409

    CAS  PubMed  Google Scholar 

  7. Gallicchio L, Matanoski G, Tao XG, Chen L, Lam TK, Boyd K, Robinson KA, Balick L, Mickelson S, Caulfield LE, Herman JG, Guallar E, Alberg AJ (2006) Adulthood consumption of preserved and nonpreserved vegetables and the risk of nasopharyngeal carcinoma: a systematic review. Int J Cancer 119(5):1125–1135. https://doi.org/10.1002/ijc.21946

    Article  CAS  PubMed  Google Scholar 

  8. Hildesheim A, West S, DeVeyra E, De Guzman MF, Jurado A, Jones C, Imai J, Hinuma Y (1992) Herbal medicine use, Epstein-Barr virus, and risk of nasopharyngeal carcinoma. Cancer Res 52(11):3048–3051

    CAS  PubMed  Google Scholar 

  9. Chelleng PK, Narain K, Das HK, Chetia M, Mahanta J (2000) Risk factors for cancer nasopharynx: a case-control study from Nagaland, India. Natl Med J India 13(1):6–8

    CAS  PubMed  Google Scholar 

  10. Xue WQ, Qin HD, Ruan HL, Shugart YY, Jia WH (2013) Quantitative association of tobacco smoking with the risk of nasopharyngeal carcinoma: a comprehensive meta-analysis of studies conducted between 1979 and 2011. Am J Epidemiol 178(3):325–338. https://doi.org/10.1093/aje/kws479

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fachiroh J, Sangrajrang S, Johansson M, Renard H, Gaborieau V, Chabrier A, Chindavijak S, Brennan P, McKay JD (2012) Tobacco consumption and genetic susceptibility to nasopharyngeal carcinoma (NPC) in Thailand. Cancer Causes Control: CCC 23(12):1995–2002. https://doi.org/10.1007/s10552-012-0077-9

    Article  PubMed  Google Scholar 

  12. Ruan HL, Xu FH, Liu WS, Feng QS, Chen LZ, Zeng YX, Jia WH (2010) Alcohol and tea consumption in relation to the risk of nasopharyngeal carcinoma in Guangdong, China. Front Med China 4(4):448–456. https://doi.org/10.1007/s11684-010-0280-6

    Article  PubMed  Google Scholar 

  13. Chen L, Gallicchio L, Boyd-Lindsley K, Tao XG, Robinson KA, Lam TK, Herman JG, Caulfield LE, Guallar E, Alberg AJ (2009) Alcohol consumption and the risk of nasopharyngeal carcinoma: a systematic review. Nutr Cancer 61(1):1–15. https://doi.org/10.1080/01635580802372633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, Feng QS, Low HQ, Zhang H, He F, Tai ES, Kang T, Liu ET, Liu J, Zeng YX (2010) A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet 42(7):599–603. https://doi.org/10.1038/ng.601

    Article  CAS  Google Scholar 

  15. Diggs DL, Huderson AC, Harris KL, Myers JN, Banks LD, Rekhadevi PV, Niaz MS, Ramesh A (2011) Polycyclic aromatic hydrocarbons and digestive tract cancers: a perspective. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 29(4):324–357. https://doi.org/10.1080/10590501.2011.629974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lachenmeier DW, Przybylski MC, Rehm J (2012) Comparative risk assessment of carcinogens in alcoholic beverages using the margin of exposure approach. Int J Cancer 131(6):E995–1003. https://doi.org/10.1002/ijc.27553

    Article  CAS  PubMed  Google Scholar 

  17. Mondal R, Ghosh SK (2013) Accumulation of mutations over the complete mitochondrial genome in tobacco-related oral cancer from northeast India. Mitochondrial DNA 24(4):432–439. https://doi.org/10.3109/19401736.2012.760551

    Article  CAS  PubMed  Google Scholar 

  18. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206(1):73–93. https://doi.org/10.1016/j.taap.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Shukla D, Dinesh Kale A, Hallikerimath S, Yerramalla V, Subbiah V, Mishra S (2013) Association between GSTM1 and CYP1A1 polymorphisms and survival in oral cancer patients. Biomed Pap Med Fac Univ Palacky Olomouc Czechoslovakia 157(4):304–310. https://doi.org/10.5507/bp.2013.028

    Article  CAS  Google Scholar 

  20. Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25(11):1679–1691. https://doi.org/10.1038/sj.onc.1209377

    Article  CAS  PubMed  Google Scholar 

  21. Mota P, Moura DS, Vale MG, Coimbra H, Carvalho L, Regateiro F (2010) CYP1A1 m1 and m2 polymorphisms: genetic susceptibility to lung cancer. Rev Port Pneumol 16(1):89–98

    Article  PubMed  Google Scholar 

  22. Sabitha K, Reddy MV, Jamil K (2010) Smoking related risk involved in individuals carrying genetic variants of CYP1A1 gene in head and neck cancer. Cancer Epidemiol 34(5):587–592. https://doi.org/10.1016/j.canep.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  23. Sergentanis TN, Economopoulos KP (2010) Four polymorphisms in cytochrome P450 1A1 (CYP1A1) gene and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122(2):459–469. https://doi.org/10.1007/s10549-009-0694-5

    Article  CAS  PubMed  Google Scholar 

  24. Mondal R, Ghosh SK, Choudhury JH, Seram A, Sinha K, Hussain M, Laskar RS, Rabha B, Dey P, Ganguli S, Nathchoudhury M, Talukdar FR, Chaudhuri B, Dhar B (2013) Mitochondrial DNA copy number and risk of oral cancer: a report from Northeast India. PLoS One 8(3):e57771. https://doi.org/10.1371/journal.pone.0057771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nosheen M, Ishrat M, Malik FA, Baig RM, Kayani MA (2010) Association of GSTM1 and GSTT1 gene deletions with risk of head and neck cancer in Pakistan: a case control study. Asian Pac J Cancer Prev 11(4):881–885

    CAS  PubMed  Google Scholar 

  26. Sharma A, Das BC, Sehgal A, Mehrotra R, Kar P, Sardana S, Phukan R, Mahanta J, Purkayastha J, Saxena S, Kapur S, Chatterjee I, Sharma JK (2013) GSTM1 and GSTT1 polymorphism and susceptibility to esophageal cancer in high- and low-risk regions of India. Tumour Biol J Int Soc Oncodev Biol Med 34(5):3249–3257. https://doi.org/10.1007/s13277-013-0897-6

    Article  CAS  Google Scholar 

  27. Shukla RK, Tilak AR, Kumar C, Kant S, Kumar A, Mittal B, Bhattacharya S (2013) Associations of CYP1A1, GSTM1 and GSTT1 polymorphisms with lung cancer susceptibility in a Northern Indian population. Asian Pac J Cancer Prev 14(5):3345–3349

    Article  CAS  PubMed  Google Scholar 

  28. Ihsan R, Chauhan PS, Mishra AK, Yadav DS, Kaushal M, Sharma JD, Zomawia E, Verma Y, Kapur S, Saxena S (2011) Multiple analytical approaches reveal distinct gene-environment interactions in smokers and non smokers in lung cancer. PLoS One 6(12):e29431. https://doi.org/10.1371/journal.pone.0029431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghosh SK, Mondal R (2012) Quick diagnosis of female genital tuberculosis using multiplex fast polymerase chain reaction in Southern Assam, India. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 118(1):72–73. https://doi.org/10.1016/j.ijgo.2012.02.006

    Article  Google Scholar 

  30. Mondal R, Ghosh SK, Talukdar FR, Laskar RS (2013) Association of mitochondrial D-loop mutations with GSTM1 and GSTT1 polymorphisms in oral carcinoma: a case control study from northeast India. Oral Oncol 49(4):345–353. https://doi.org/10.1016/j.oraloncology.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  31. Kiruthiga PV, Kannan MR, Saraswathi C, Pandian SK, Devi KP (2011) CYP1A1 gene polymorphisms: lack of association with breast cancer susceptibility in the southern region (Madurai) of India. Asian Pac J Cancer Prev 12(8):2133–2138

    CAS  PubMed  Google Scholar 

  32. Choudhury JH, Choudhury B, Kundu S, Ghosh SK (2014) Combined effect of tobacco and DNA repair genes polymorphisms of XRCC1 and XRCC2 influence high risk of head and neck squamous cell carcinoma in northeast Indian population. Med Oncol 31(8):67. https://doi.org/10.1007/s12032-014-0067-8

    Article  CAS  PubMed  Google Scholar 

  33. Choudhury JH, Ghosh SK (2014) Gene-environment interaction and susceptibility in head and neck cancer patients and in their first-degree relatives: a study of Northeast Indian population. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. https://doi.org/10.1111/jop.12249

  34. McIlwain CC, Townsend DM, Tew KD (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25(11):1639–1648. https://doi.org/10.1038/sj.onc.1209373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sarkar S, Nagabhushan M, Soman CS, Tricker AR, Bhide SV (1989) Mutagenicity and carcinogenicity of smoked meat from Nagaland, a region of India prone to a high incidence of nasopharyngeal cancer. Carcinogenesis 10(4):733–736

    Article  CAS  PubMed  Google Scholar 

  36. Guo X, O'Brien SJ, Zeng Y, Nelson GW, Winkler CA (2008) GSTM1 and GSTT1 gene deletions and the risk for nasopharyngeal carcinoma in Han Chinese. Cancer Epidemiol Biomark Prev 17(7):1760–1763. https://doi.org/10.1158/1055-9965.EPI-08-0149

    Article  CAS  Google Scholar 

  37. Jiang Y, Li N, Dong P, Zhang N, Sun Y, Han M, Wen J, Chen M (2011) Polymorphisms in GSTM1, GSTTI and GSTP1 and nasopharyngeal cancer in the east of China: a case-control study. Asian Pac J Cancer Prev 12(11):3097–3100

    PubMed  Google Scholar 

  38. Wei Y, Zhou T, Lin H, Sun M, Wang D, Li H, Li B (2013) Significant associations between GSTM1/GSTT1 polymorphisms and nasopharyngeal cancer risk. Tumour Biol J Int Soc Oncodev Biol Med 34(2):887–894. https://doi.org/10.1007/s13277-012-0623-9

    Article  CAS  Google Scholar 

  39. Cheng YJ, Chien YC, Hildesheim A, Hsu MM, Chen IH, Chuang J, Chang J, Ma YD, Luo CT, Hsu WL, Hsu HH, Huang H, Chang JF, Chen CJ, Yang CS (2003) No association between genetic polymorphisms of CYP1A1, GSTM1, GSTT1, GSTP1, NAT2, and nasopharyngeal carcinoma in Taiwan. Cancer Epidemiol Biomark Prev 12(2):179–180

    CAS  Google Scholar 

  40. Anantharaman D, Chaubal PM, Kannan S, Bhisey RA, Mahimkar MB (2007) Susceptibility to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: tobacco exposure as a risk modulator. Carcinogenesis 28(7):1455–1462. https://doi.org/10.1093/carcin/bgm038

    Article  CAS  PubMed  Google Scholar 

  41. Soya SS, Vinod T, Reddy KS, Gopalakrishnan S, Adithan C (2007) Genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) and upper aerodigestive tract cancer risk among smokers, tobacco chewers and alcoholics in an Indian population. Eur J Cancer 43(18):2698–2706. https://doi.org/10.1016/j.ejca.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  42. Ghosh SK, Singh AS, Mondal R, Kapfo W, Khamo V, Singh YI (2014) Dysfunction of mitochondria due to environmental carcinogens in nasopharyngeal carcinoma in the ethnic group of Northeast Indian population. Tumour Biol J Int Soc Oncodev Biol Med 35(7):6715–6724. https://doi.org/10.1007/s13277-014-1897-x

    Article  CAS  Google Scholar 

  43. Sam SS, Thomas V, Reddy SK, Surianarayanan G, Chandrasekaran A (2008) CYP1A1 polymorphisms and the risk of upper aerodigestive tract cancers in an Indian population. Head Neck 30(12):1566–1574. https://doi.org/10.1002/hed.20897

    Article  PubMed  Google Scholar 

  44. Chandirasekar R, Kumar BL, Sasikala K, Jayakumar R, Suresh K, Venkatesan R, Jacob R, Krishnapriya EK, Kavitha H, Ganesh GK (2014) Assessment of genotoxic and molecular mechanisms of cancer risk in smoking and smokeless tobacco users. Mutat Res Genet Toxicol Environ Mutagen 767C:21–27. https://doi.org/10.1016/j.mrgentox.2014.04.007

    Article  CAS  Google Scholar 

  45. Bartsch H, Rojas M, Nair U, Nair J, Alexandrov K (1999) Genetic cancer susceptibility and DNA adducts: studies in smokers, tobacco chewers, and coke oven workers. Cancer Detect Prev 23(6):445–453

    Article  CAS  PubMed  Google Scholar 

  46. Sharma R, Ahuja M, Panda NK, Khullar M (2011) Interactions among genetic variants in tobacco metabolizing genes and smoking are associated with head and neck cancer susceptibility in north Indians. DNA Cell Biol 30(8):611–616. https://doi.org/10.1089/dna.2010.1184

    Article  CAS  PubMed  Google Scholar 

  47. Matthias C, Bockmuhl U, Jahnke V, Jones PW, Hayes JD, Alldersea J, Gilford J, Bailey L, Bath J, Worrall SF, Hand P, Fryer AA, Strange RC (1998) Polymorphism in cytochrome P450 CYP2D6, CYP1A1, CYP2E1 and glutathione S-transferase, GSTM1, GSTM3, GSTT1 and susceptibility to tobacco-related cancers: studies in upper aerodigestive tract cancers. Pharmacogenetics 8(2):91–100

    Article  CAS  PubMed  Google Scholar 

  48. Varela-Lema L, Taioli E, Ruano-Ravina A, Barros-Dios JM, Anantharaman D, Benhamou S, Boccia S, Bhisey RA, Cadoni G, Capoluongo E, Chen CJ, Foulkes W, Goloni-Bertollo EM, Hatagima A, Hayes RB, Katoh T, Koifman S, Lazarus P, Manni JJ, Mahimkar M, Morita S, Park J, Park KK, Pavarino Bertelli EC, de Souza Fonseca Ribeiro EM, Roy B, Spitz MR, Strange RC, Wei Q, Ragin CC (2008) Meta-analysis and pooled analysis of GSTM1 and CYP1A1 polymorphisms and oral and pharyngeal cancers: a HuGE-GSEC review. Genet Med Off J Am Coll Med Genet 10(6):369–384. https://doi.org/10.1097/GIM.0b013e3181770196

    Article  CAS  Google Scholar 

  49. Choudhury JH, Ghosh SK (2015) Promoter hypermethylation profiling identifies subtypes of head and neck cancer with distinct viral, environmental, genetic and survival characteristics. PLoS One 10(6):e0129808. https://doi.org/10.1371/journal.pone.0129808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Laskar RS, Talukdar FR, Choudhury JH, Singh SA, Kundu S, Dhar B, Mondal R, Ghosh SK (2015) Association of HPV with genetic and epigenetic alterations in colorectal adenocarcinoma from Indian population. Tumour Biol J Int Soc Oncodev Biol Med 36(6):4661–4670. https://doi.org/10.1007/s13277-015-3114-y

    Article  CAS  Google Scholar 

  51. Pietrusinski M, Kepczynski L, Jedrzejczyk A, Borkowska E, Traczyk-Borszynska M, Constantinou M, Kauzewski B, Borowiec M (2016) Detection of bladder cancer in urine sediments by a hypermethylation panel of selected tumor suppressor genes. Cancer Biomark Sect A Dis Mark. https://doi.org/10.3233/CBM-160673

  52. Jiang W, Cai R, Chen QQ (2015) DNA methylation biomarkers for nasopharyngeal carcinoma: diagnostic and prognostic tools. Asian Pac J Cancer Prev 16(18):8059–8065

    Article  PubMed  Google Scholar 

  53. Lo KW, Chung GT, To KF (2012) Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches. Semin Cancer Biol 22(2):79–86. https://doi.org/10.1016/j.semcancer.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  54. Dai W, Zheng H, Cheung AK, Lung ML (2016) Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chinese. Clin Oncol 5(2):16. 10.21037/cco.2016.03.06

    Article  Google Scholar 

  55. Talukdar FR, Ghosh SK, Laskar RS, Kannan R, Choudhury B, Bhowmik A (2015) Epigenetic pathogenesis of human papillomavirus in upper aerodigestive tract cancers. Mol Carcinog 54(11):1387–1396. https://doi.org/10.1002/mc.22214

    Article  CAS  PubMed  Google Scholar 

  56. Lleras RA, Smith RV, Adrien LR, Schlecht NF, Burk RD, Harris TM, Childs G, Prystowsky MB, Belbin TJ (2013) Unique DNA methylation loci distinguish anatomic site and HPV status in head and neck squamous cell carcinoma. Clin Cancer Res 19(19):5444–5455. https://doi.org/10.1158/1078-0432.CCR-12-3280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Talukdar FR, Ghosh SK, Laskar RS, Mondal R (2013) Epigenetic, genetic and environmental interactions in esophageal squamous cell carcinoma from northeast India. PLoS One 8(4):e60996. https://doi.org/10.1371/journal.pone.0060996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou L, Jiang W, Ren C, Yin Z, Feng X, Liu W, Tao Q, Yao K (2005) Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues. Neoplasia 7(9):809–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tong JH, Tsang RK, Lo KW, Woo JK, Kwong J, Chan MW, Chang AR, van Hasselt CA, Huang DP, To KF (2002) Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res 8(8):2612–2619

    CAS  PubMed  Google Scholar 

  60. Tsai CN, Tsai CL, Tse KP, Chang HY, Chang YS (2002) The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A 99(15):10084–10089. https://doi.org/10.1073/pnas.152059399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Skalska L, White RE, Franz M, Ruhmann M, Allday MJ (2010) Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog 6(6):e1000951. https://doi.org/10.1371/journal.ppat.1000951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kulkarni V, Saranath D (2004) Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncol 40(2):145–153

    Article  CAS  PubMed  Google Scholar 

  63. Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey KT (2002) Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 21(27):4231–4236. https://doi.org/10.1038/sj.onc.1205528

    Article  CAS  PubMed  Google Scholar 

  64. Chang HW, Ling GS, Wei WI, Yuen AP (2004) Smoking and drinking can induce p15 methylation in the upper aerodigestive tract of healthy individuals and patients with head and neck squamous cell carcinoma. Cancer 101(1):125–132. https://doi.org/10.1002/cncr.20323

    Article  PubMed  Google Scholar 

  65. Ishida E, Nakamura M, Ikuta M, Shimada K, Matsuyoshi S, Kirita T, Konishi N (2005) Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41(6):614–622. https://doi.org/10.1016/j.oraloncology.2005.02.003

    Article  CAS  PubMed  Google Scholar 

  66. Puri SK, Si L, Fan CY, Hanna E (2005) Aberrant promoter hypermethylation of multiple genes in head and neck squamous cell carcinoma. Am J Otolaryngol 26(1):12–17

    Article  CAS  PubMed  Google Scholar 

  67. Brait M, Ford JG, Papaiahgari S, Garza MA, Lee JI, Loyo M, Maldonado L, Begum S, McCaffrey L, Howerton M, Sidransky D, Emerson MR, Ahmed S, Williams CD, Hoque MO (2009) Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiol Biomark Prev 18(11):2984–2991. https://doi.org/10.1158/1055-9965.EPI-08-1245

    Article  CAS  Google Scholar 

  68. Lin RK, Hsieh YS, Lin P, Hsu HS, Chen CY, Tang YA, Lee CF, Wang YC (2010) The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest 120(2):521–532. https://doi.org/10.1172/JCI40706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bonsch D, Lenz B, Fiszer R, Frieling H, Kornhuber J, Bleich S (2006) Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm (Vienna) 113(9):1299–1304. https://doi.org/10.1007/s00702-005-0413-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our humble acknowledgement goes to the Department of Biotechnology (DBT), Govt. of India for providing infra-structural facilities.

(BT/Med/NE-SFC/2009) for conducting research on Cancer and Naga Hospital Administration, Kohima; RIMS, Imphal; Civil Hospital, Aizwal for the biological samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Kumar Ghosh.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.A., Ghosh, S.K. Metabolic Phase I (CYPs) and Phase II (GSTs) Gene Polymorphisms and Their Interaction with Environmental Factors in Nasopharyngeal Cancer from the Ethnic Population of Northeast India. Pathol. Oncol. Res. 25, 33–44 (2019). https://doi.org/10.1007/s12253-017-0309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-017-0309-0

Keywords

Navigation