Skip to main content

Advertisement

Log in

Aptamers against viral hepatitis: from rational design to practical application

  • Published:
Virologica Sinica

Abstract

Aptamers are short nucleic acids or peptides that strongly bind to a protein of interest and functionally inhibit a given target protein at the intracellular level. Besides high affinity and specificity, aptamers have several advantages over traditional antibodies. Hence, they have been broadly selected to develop antiviral agents for therapeutic applications against hepatitis B and C viruses (HBV, HCV). This review provides a summary of in vitro selection and characterization of aptamers against viral hepatitis, which is of practical significance in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck J, Nassal M. 2007. Hepatitis B virus replication. World J Gastroenterol, 13: 48–64.

    PubMed  CAS  Google Scholar 

  2. Bellecave P, Andreola M L, Ventura M, et al. 2003. Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides, 13: 455–463.

    Article  PubMed  CAS  Google Scholar 

  3. Bellecave P, Cazenave C, Rumi J, et al. 2008. Inhibition of hepatitis C virus (HCV) RNA polymerase by DNA aptamers: mechanism of inhibition of in vitro RNA synthesis and effect on HCV-infected cells. Antimicrob Agents Chemother, 52(6): 2097–2110.

    Article  PubMed  CAS  Google Scholar 

  4. Biroccio A, Hamm J, Incitti I, et al. 2002. Selection of RNA aptamers that are specific and high affinity ligands of the hepatitis C virus-dependent RNA polymerase. J Virol, 76: 3688–3696.

    Article  PubMed  CAS  Google Scholar 

  5. Bryant K F, Cox J C, Wang H, et al. 2005. Binding of herpes simplex virus-1US11 to specific RNA sequences. Nucleic Acids Res, 33: 6090–6100.

    Article  PubMed  CAS  Google Scholar 

  6. Colas P, Cohen B, Jessen T, et al. 1996. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature, 380(6574): 548–550.

    Article  PubMed  CAS  Google Scholar 

  7. Ellington A D, Szostak J W. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature, 346: 818–828.

    Article  PubMed  CAS  Google Scholar 

  8. Fukuda K, Vishnuvardhan D, Sekiya S, et al. 2000. Isolation and characterization of RNA aptamers specific for the hepatitis C virus nonstructural protein 3 protease. Eur J Biochem, 267: 3685–3694.

    Article  PubMed  CAS  Google Scholar 

  9. Gopinath S C B, Misono T, Mizuno T, et al. 2006. An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits hemagglutinin-mediated membrane fusion. J Gen Virol, 87: 479–487.

    Article  PubMed  CAS  Google Scholar 

  10. Gopinath S C B, Sakamaki Y, Kawasaki K, et al. 2006. An efficient RNA aptamer against human influenza B virus hemagglutinin. J Biochem, 139: 837–846.

    Article  PubMed  CAS  Google Scholar 

  11. Gopinath S C B. 2007. Antiviral aptamers. Arch Virol, 152: 2137–2157.

    Article  PubMed  CAS  Google Scholar 

  12. Hu K, Beck J, Nassal M. 2004. SELEX-derived aptamers of the duck hepatitis B virus RNA encapsidation signal distinguish critical and non-critical residues for productive initiation of rever transcription. Nucleic Acids Res, 32: 4377–4389.

    Article  PubMed  CAS  Google Scholar 

  13. James W. 2007. Aptamers in the virologists’ toolkit. J Gen Virol, 88: 351–364.

    Article  PubMed  CAS  Google Scholar 

  14. Jones L A, Clancy L E, Rawlinson W D, et al. 2006. High-affinity aptamers to subtype 3a hepatitis C virus polymerase display genotypic specificity. Antimicrob Agents Chemother, 50(9): 3019–3027.

    Article  PubMed  CAS  Google Scholar 

  15. Kikuchi K, Umehara T, Fukuda K, et al. 2005. A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III-IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucl Acids Res, 33: 683–692.

    Article  PubMed  CAS  Google Scholar 

  16. Konno K, Nishikawa S, Hasegawa T, et al. 2007. Isolation of RNA aptamers specific for the HCV minus-IRES domain I. Nucl Acids Symp Series, 51: 393–394.

    Article  Google Scholar 

  17. Kumar P K R, Machida K, Urvil P T, et al. 1997. Isolation of RNA aptamers specific to the NS3 protein of hepatitis C virus from a pool of completely random RNA. Virology, 237: 270–282.

    Article  PubMed  CAS  Google Scholar 

  18. Lee S, Kim Y S, Jo M, et al. 2007. Chip-based detection of hepatitis C virus using RNA aptamers that specifically bind to HCV core antigen. Biochem Biophys Res Commun, 358(1): 47–52.

    Article  PubMed  CAS  Google Scholar 

  19. Lohmann V, Korner F, Koch J, et al. 1999. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 285: 110–113.

    Article  PubMed  CAS  Google Scholar 

  20. Nassal M. 2008. Hepatitis B virus: reverse transcription a different way. Virus Res, 134: 235–249.

    Article  PubMed  CAS  Google Scholar 

  21. Ng E W M, Shima D T, Calias P, et al. 2006. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov, 5: 123–132.

    Article  PubMed  CAS  Google Scholar 

  22. Nulf C J, Corey D. 2004. Intracellular inhibition of hepatitis C virus (HCV) internal ribosomal entry site (IRES)-dependent translation by peptide nucleic acids (PNAs) and locked nucleic acids (LNAs). Nucl Acids Res, 32: 3792–3798.

    Article  PubMed  CAS  Google Scholar 

  23. Pileur F, Andreola M, Dausse E, et al. 2003. Selective inhibitory DNA aptamers of the human RNase H1. Nucl Acids Res, 31: 5776–5788.

    Article  PubMed  CAS  Google Scholar 

  24. Rosenberg S. 2001. Recent advances in the molecular biology of hepatitis C virus. J Mol Biol, 313: 451–464.

    Article  PubMed  CAS  Google Scholar 

  25. Schultz U, Grgacic E, Nassal M. 2004. Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res, 63: 1–70.

    Article  PubMed  CAS  Google Scholar 

  26. Tallet-Lopez B, Aldaz-Carroll L, Chabas S, et al. 2003. Antisense oligonucleotides targeted to the domain IIId of the hepatitis C virus IRES compete with 40S ribosomal subunit binding and prevent in vitro translation. Nucleic Acids Res, 31: 734–742.

    Article  PubMed  CAS  Google Scholar 

  27. Tomai E, Butz K, Lohrey C, et al. 2006. Peptide aptamer-mediated inhibition of target proteins by sequestration into aggresomes. J Biol Chem, 281(30): 21345–21352.

    Article  PubMed  CAS  Google Scholar 

  28. Trahtenherts A, Gal-Tanamy M, Zemel R, et al. 2008. Inhibition of hepatitis C virus RNA replicons by peptide aptamers. Antiviral Res, 77(3): 195–205.

    Article  PubMed  CAS  Google Scholar 

  29. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249: 505–510.

    Article  PubMed  CAS  Google Scholar 

  30. Umehara T, Fukuda K, Nishikawa F, et al. 2005. Rational design of dual-functional aptamers that inhibit the protease and helicase activities of HCV NS3. J Biochem (Tokyo), 137: 339–347.

    CAS  Google Scholar 

  31. Urvil P T, Kakiuchi N, Zhou D M, et al. 1997. Selection of RNA aptamers that bind specifically to the NS3 protease of hepatitis C virus. Eur J Biochem, 248: 130–138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-hong Hu.

Additional information

Foundation item: Program of Chinese Academy of Sciences (0802021SA1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, H., Hu, Kh. Aptamers against viral hepatitis: from rational design to practical application. Virol. Sin. 23, 315–320 (2008). https://doi.org/10.1007/s12250-008-2979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-008-2979-y

Key words

CLC number

Navigation