Skip to main content

Advertisement

Log in

Development, Optimization, and Evaluation of Nano-platforms for Delivery of siRNA and BPTES in c-Myc Induced Breast Cancer

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

siRNA therapeutics has emerged as a promising strategy for treating several “undruggable” genetically impaired conditions while BPTES, an inhibitory molecule of the glutaminase enzyme is beneficial in treating various glutamine induced cancers. While siRNA is highly susceptible to degradation, the latter has solubility issues which hamper their delivery to the target site. Therefore, the delivery of both the components using PLGA nanoparticles can be a promising approach in treating breast cancer. Hence, the objective is to develop polymeric nanoparticles of siRNA and BPTES and to check their synergistic/additive effect in breast cancer cell lines namely MCF7 and MDA-MB231.

Methods

siRNA specific to c-Myc gene designed using siRNA designing tools. Development and optimization of polymeric nanoparticles was done using Box-Behnken design. The formulated nanoparticles were characterized for particle size, zeta potential, PDI, and encapsulation efficiency. They were also subjected to surface morphological analysis, stability studies, FTIR, XRD, in vitro release study, in vitro cytotoxicity, and checkerboard study in breast cancer cell lines.

Results

siRNA and BPTES were encapsulated within PLGA nanoformulations. The nanoparticles had particle size in the range of 200–350 nm and zeta potential of −20 to −28. SEM and TEM images confirmed their morphology. Agarose gel electrophoresis confirmed the safe incorporation of siRNA into the polymeric matrix. The in vitro release study showed the sustained release of nanoformulation for 72 h. The in vitro cytotoxicity studies and checkerboard assay confirmed the synergistic effect of the nanoformulations in breast cancer cells.

Conclusion

The siRNA and BPTES loaded nanoparticles were successfully developed which showed positive results in breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13:1387–97. https://doi.org/10.7150/ijbs.21635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jayachandran P, Battaglin F, Strelez C, Lenz A, Algaze S, Soni S, et al. Breast cancer and neurotransmitters: emerging insights on mechanisms and therapeutic directions. n.d. https://doi.org/10.1038/s41388-022-02584-4.

  3. Waks AG, Winer EP, Adrienne G. Waks, MD; Eric P. Winer M. Breast cancer treatment a review. Jama. 2019;321:288–300. https://doi.org/10.1001/jama.2018.19323.

  4. Matsen CB, Neumayer LA. Breast cancer: a review for the general surgeon. JAMA Surg. 2013;148:971–80. https://doi.org/10.1001/JAMASURG.2013.3393.

    Article  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  6. Warburg O. On the Origin of Cancer cells. 1956;123:309–14

  7. Board M, Humm S, Newaholme EA. Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J. 1990;265:503–9. https://doi.org/10.1042/bj2650503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18:54–61. https://doi.org/10.1016/j.gde.2008.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen T-L, Durán R V. Glutamine metabolism in cancer therapy. Cancer Drug Resist. 2018:126–38. https://doi.org/10.20517/cdr.2018.08.

  10. Anso E, Mullen AR, Felsher DW, Matés JM, DeBerardinis RJ, Chandel NS. Metabolic changes in cancer cells upon suppression of MYC. Cancer Metab. 2013;1:7. https://doi.org/10.1186/2049-3002-1-7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blancato J, Singh B, Liu A, Liao DJ, Dickson RB. Correlation of amplification and overexpression of the c-myc oncogene in high-grade breast cancer: FISH, in situ hybridisation and immunohistochemical analyses. Br J Cancer. 2004;90:1612–9. https://doi.org/10.1038/sj.bjc.6601703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. 2011. https://doi.org/10.1038/nature10334.

  13. Claret FX, Arcaro A, Stampfer MR, Blandino G, Hartl M. The quest for targets executing MYC-dependent cell transformation. 2016;6:132. https://doi.org/10.3389/fonc.2016.00132.

    Article  Google Scholar 

  14. Alexandrova R, Podlipnik Č. MYC oncogenes as potential anticancer targets. Oncog Viruses Vol 2 Med Appl Viral Oncol Res. 2023;2:191–219. https://doi.org/10.1016/B978-0-12-824156-1.00011-X.

  15. Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, et al. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. Nat Nanotechnol. 2023;18:193–204. https://doi.org/10.1038/s41565-022-01266-2.

    Article  CAS  PubMed  Google Scholar 

  16. Guo T, Zhu Y, Yue M, Wang F, Li Z, Lin M. The Therapeutic Effects of DDP/CD44-shRNA Nanoliposomes in AMF on Ovarian Cancer. Front Oncol. 2022;12:1–12. https://doi.org/10.3389/fonc.2022.811783.

    Article  CAS  Google Scholar 

  17. Cancer Genome Atlas Network T. Comprehensive molecular portraits of human breast tumours. 2012. https://doi.org/10.1038/nature11412.

  18. Camarda R, Zhou AY, Kohnz RA, Balakrishnan S, Mahieu C, Anderton B, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016 224 2016;22:427–32. https://doi.org/10.1038/nm.4055.

  19. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901. https://doi.org/10.1158/1535-7163.MCT-13-0870.

    Article  CAS  PubMed  Google Scholar 

  20. Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, Rudelius M, et al. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC degradation. Oncotarget. 2017;8:85858. https://doi.org/10.18632/ONCOTARGET.20691.

  21. Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762–5. https://doi.org/10.1038/nature07823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paul A, Muralidharan A, Biswas A, Kamath BV, Joseph A, Alex AT. siRNA therapeutics and its challenges: recent advances in effective delivery for cancer therapy. OpenNano. 2022;7. https://doi.org/10.1016/J.ONANO.2022.100063.

  23. Elgogary A, Xu Q, Poore B, Alt J, Zimmermann SC, Zhao L, et al. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proc Natl Acad Sci USA. 2016;113:E5328–36. https://doi.org/10.1073/pnas.1611406113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bala I, Hariharan S, Kumar MNVR. PLGA Nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carr Syst. 2004;21:387–422. https://doi.org/10.1615/CRITREVTHERDRUGCARRIERSYST.V21.I5.20.

    Article  CAS  Google Scholar 

  25. Pandita D, Kumar S, Lather V. Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov Today. 2015;20:95–104. https://doi.org/10.1016/J.DRUDIS.2014.09.018.

    Article  CAS  PubMed  Google Scholar 

  26. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161:505–22. https://doi.org/10.1016/J.JCONREL.2012.01.043.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng X, Zhu Y, Fei W, Zhao Y, Liu Y, Yan J, et al. Redox-responsive and electrically neutral PLGA nanoparticles for siRNA delivery in human cervical carcinoma cells. J Pharm Innov. 2022;17:1392–404. https://doi.org/10.1007/s12247-021-09592-z.

    Article  Google Scholar 

  28. Choi SG, Shin J, Lee KY, Park H, Kim SI, Yi YY, et al. PINK1 siRNA-loaded poly(lactic-co-glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosis-induced ischemic stroke. Glia. 2023. https://doi.org/10.1002/glia.24339.

    Article  PubMed  Google Scholar 

  29. Katt WP, Cerione RA. Glutaminase regulation in cancer cells: a druggable chain of events. Drug Discov Today. 2014;19:450–7. https://doi.org/10.1016/J.DRUDIS.2013.10.008.

    Article  CAS  PubMed  Google Scholar 

  30. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in b cells. Cell Metab. 2012;15:110–21. https://doi.org/10.1016/j.cmet.2011.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013;11:1–12. https://doi.org/10.1186/1477-3155-11-26/METRICS.

    Article  Google Scholar 

  32. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009;61:428–37. https://doi.org/10.1016/J.ADDR.2009.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release. 2007;121:3–9. https://doi.org/10.1016/J.JCONREL.2007.03.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA. 2007;104:2050–5. https://doi.org/10.1073/PNAS.0608582104/SUPPL_FILE/IMAGE97.GIF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chaturvedi S, Garg A. Development and optimization of nanoemulsion containing exemestane using box-behnken design. J Drug Deliv Sci Technol. 2023;80:104151. https://doi.org/10.1016/J.JDDST.2023.104151.

    Article  CAS  Google Scholar 

  36. Alonso-González M, Fernández-Carballido A, Quispe-Chauca P, Lozza I, Martín-Sabroso C, Isabel F-Sánchez A. DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect. Eur J Pharm Biopharm. 2022;180:149–60. https://doi.org/10.1016/J.EJPB.2022.09.022.

    Article  PubMed  Google Scholar 

  37. Shafiee M, Abolmaali SS, Abedanzadeh M, Tamaddon AM. Taguchi design optimization of curcumin loading in mesoporous silica nanoparticles with variable particle and pore sizes. Trends Pharm Sci. 2022;8:155–64. https://doi.org/10.30476/TIPS.2022.95646.1150.

  38. Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014;124:398–412. https://doi.org/10.1172/JCI71180.

    Article  CAS  PubMed  Google Scholar 

  39. Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc. 2007;2:2068–78. https://doi.org/10.1038/nprot.2007.278.

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22:326–30. https://doi.org/10.1038/nbt936.

    Article  CAS  PubMed  Google Scholar 

  41. Ui-Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki-Hamazaki H, Juni A, et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 2004;32:936–48. https://doi.org/10.1093/nar/gkh247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pei Y, Tuschl T. On the art of identifying effective and specific siRNAs. Nat Methods. 2006;3:670–6. https://doi.org/10.1038/nmeth911.

    Article  CAS  PubMed  Google Scholar 

  43. Cun D, Foged C, Yang M, Frøkjær S, Nielsen HM. Preparation and characterization of poly(dl-lactide-co-glycolide) nanoparticles for siRNA delivery. Int J Pharm. 2010;390:70–5. https://doi.org/10.1016/j.ijpharm.2009.10.023.

    Article  CAS  PubMed  Google Scholar 

  44. Sathyamoorthy N, Magharla D, Chintamaneni P, Vankayalu S. Optimization of paclitaxel loaded poly (ε-caprolactone) nanoparticles using Box Behnken design. Beni-Suef Univ J Basic Appl Sci. 2017;6:362–73. https://doi.org/10.1016/j.bjbas.2017.06.002.

    Article  Google Scholar 

  45. Haque S, Boyd BJ, McIntosh MP, Pouton CW, Kaminskas LM, Whittaker M. Suggested procedures for the reproducible synthesis of Poly(d, l-lactideco-glycolide) nanoparticles using the emulsification solvent diffusion platform. Curr Nanosci. 2018;14:448–53. https://doi.org/10.2174/1573413714666180313130235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zielińska A, Ferreira NR, Feliczak-Guzik A, Nowak I, Souto EB. Loading, release profile and accelerated stability assessment of monoterpenes-loaded solid lipid nanoparticles (SLN). Pharm Dev Technol. 2020;25:832–44. https://doi.org/10.1080/10837450.2020.1744008.

    Article  CAS  PubMed  Google Scholar 

  47. Koganti S, Jagani HV, Palanimuthu VR, Mathew JA, Rao MC, Rao JV. In vitro and in vivo evaluation of the efficacy of nanoformulation of siRNA as an adjuvant to improve the anticancer potential of cisplatin. Exp Mol Pathol. 2013;94:137–47. https://doi.org/10.1016/j.yexmp.2012.10.007.

    Article  CAS  PubMed  Google Scholar 

  48. Aldawsari HM, Alhakamy NA, Padder R, Husain M, Md S. Preparation and characterization of chitosan coated plga nanoparticles of resveratrol: Improved stability, antioxidant and apoptotic activities in H1299 lung cancer cells. Coatings. 2020;10. https://doi.org/10.3390/COATINGS10050439.

  49. Raja MAG, Katas H, Wen TJ. Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLoS One. 2015;10. https://doi.org/10.1371/JOURNAL.PONE.0128963.

  50. Jin L, Wang Q, Chen J, Wang Z, Xin H, Zhang D. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharm. 2019;11:615. https://doi.org/10.3390/PHARMACEUTICS11110615.

  51. Zhou X, Chen L, Nie W, Wang W, Qin M, Mo X, et al. Dual-responsive mesoporous silica nanoparticles mediated codelivery of doxorubicin and Bcl-2 SiRNA for targeted treatment of breast cancer. J Phys Chem C. 2016;120:22375–87. https://doi.org/10.1021/acs.jpcc.6b06759.

    Article  CAS  Google Scholar 

  52. Vineeth P, Rao Vadaparthi PR, Kumar K, Babu BDJ, Veerabhadra Rao A, Suresh Babu K. Influence of organic solvents on nanoparticle formation and surfactants on release behaviour in-vitro using costunolide as model anticancer agent. Int J Pharm Pharm Sci. 2014;6:638–45.

  53. Xi J, Da L, Yang C, Chen R, Gao L, Fan L HJ. Mn 2 + -coordinated PDA @ DOX / PLGA nanoparticles as a smart theranostic agent for synergistic chemo-photothermal tumor therapy. Int J Nanomedicine. 2017;12:3331–45.

  54. Mutalik S, Suthar NA, Managuli RS, Shetty PK, Avadhani K, Kalthur G, et al. Development and performance evaluation of novel nanoparticles of a grafted copolymer loaded with curcumin. Int J Biol Macromol. 2016;86:709–20. https://doi.org/10.1016/j.ijbiomac.2015.11.092.

    Article  CAS  PubMed  Google Scholar 

  55. Mäkelä P, Zhang SM, Rudd SG. Drug synergy scoring using minimal dose response matrices. BMC Res Notes. 2021;14. https://doi.org/10.1186/s13104-021-05445-7.

  56. Kars MD, Işeri ÖD, Gündüz U, Ural AU, Arpaci F, Molnár J. Development of rational in vitro models for drug resistance in breast cancer and modulation of MDR by selected compounds. Anticancer Res. 2006;26:4559–68.

    CAS  PubMed  Google Scholar 

  57. Saw PE, Song EW. siRNA therapeutics: a clinical reality. Sci China Life Sci. 2020;63:485–500. https://doi.org/10.1007/s11427-018-9438-y.

    Article  CAS  PubMed  Google Scholar 

  58. Justus CR, Dong L, Yang L V. Acidic tumor microenvironment and pH-sensing G protein-coupled receptors. Front Physiol. 2013;4:354. https://doi.org/10.3389/FPHYS.2013.00354/BIBTEX.

  59. Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27:1–12. https://doi.org/10.1007/BF02980037/METRICS.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao G, Ho W, Chu J, Xiong X, Hu B, Boakye-Yiadom KO, et al. Inhalable siRNA nanoparticles for enhanced tumor-targeting treatment of KRAS -mutant non-small-cell lung cancer. ACS Appl Mater Interfaces. 2023. https://doi.org/10.1021/acsami.3c05007.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen M, Gao S, Dong M, Song J, Yang C, Howard KA, et al. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano. 2012;6:4835–44. https://doi.org/10.1021/nn300106t.

    Article  CAS  PubMed  Google Scholar 

  62. Xu D, Dwyer J, Li H, Duan W, Liu JP. Ets2 maintains hTERT gene expression and breast cancer cell proliferation by interacting with c-Myc. J Biol Chem. 2008;283:23567–80. https://doi.org/10.1074/jbc.M800790200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nagana Gowda GA, Barding GA, Dai J, Gu H, Margineantu DH, Hockenbery DM, et al. A metabolomics study of BPTES altered metabolism in human breast cancer cell lines. Front Mol Biosci. 2018;5:49. https://doi.org/10.3389/FMOLB.2018.00049/BIBTEX.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful and would like to acknowledge Indian Council of Medical Research (ICMR), Government of India, New Delhi for Senior Research Fellowship to Ms. Arpita Paul. The authors are grateful to ICMR, Government of India, New Delhi, and Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal for providing financial and infrastructural support for the research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Treasa Alex.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest, although Ms. Arpita Paul have received Senior Research Fellowship from Indian Council of Medical Research (ICMR), Government of India, New Delhi, and contingency grant from Manipal Academy of Higher Education, Manipal to procure research supplies and attend symposia for research purpose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 102 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, A., Biswas, A., Chatterjee, S. et al. Development, Optimization, and Evaluation of Nano-platforms for Delivery of siRNA and BPTES in c-Myc Induced Breast Cancer. J Pharm Innov 18, 2210–2234 (2023). https://doi.org/10.1007/s12247-023-09785-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09785-8

Keywords

Navigation