Skip to main content

Advertisement

Log in

A Computational Approach for Exploring Indinavir as a Potent Protease Inhibitor and Development of Its Microsphere for Anticancer Activity

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The objective of the present investigation was to establish a molecular association of different proteases as cancer targets with the indinavir and how the physicochemical characteristics of the indinavir sulfate microsphere vary with different process variables was systemically established.

Methods

Molecular interactions with indinavir were identified and established by molecular simulation docking studies. Indinavir sulfate-loaded microspheres were prepared by the oil-in-oil emulsion solvent evaporation technique.

Results

Results indicated that indinavir could interact with all four proteases at the active binding site of receptors. Indinavir was found to show significantly higher interaction with Matrix Metalloproteases, Aspartate Proteases, and Cysteine Proteases with a binding energy of -8.80, -8.19, and -6.87, respectively, as compared to their native ligand. However, serine proteases exhibit less but significant interaction with a binding energy of -5.92 than the native ligand. The microspheres exhibited 72%-93% of entrapment and prolonged drug release (DR), up to 9 h. The drug-loaded microspheres showed invariable character by the Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermographs and revealed no drug-polymer interactions. The decrease in the drug's crystallinity was observed in X-ray diffraction (XRD). The scanning electron microscope (SEM) study revealed the spherical and porous nature of microspheres.

Conclusion

Indinavir could act as a potential inhibitor of different proteases associated with tumor growth initiation, progression, and metastasis, and microspheres with sustained DR could be utilized to deliver an anticancer drug in a more targeted way as an emerging cancer microsphere technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Wei F, Wang D, Wei J, Tang N, Tang L, Xiong F, Guo C, Zhou M, Li X, Li G, Xiong W. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resistance. Cell Mol Life Sci. 2020;11:1–21.

    Google Scholar 

  2. Kamber Kaya HE, Radhakrishnan SK. Trash Talk: Mammalian Proteasome Regulation at the Transcriptional Level. Trends Genet. 2021;37(2):160–73.

    Article  PubMed  CAS  Google Scholar 

  3. Wu T, Yoon H, Xiong Y, Dixon-Clarke SE, Nowak RP, Fischer ES. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat Struct Mol Biol. 2020;27(7):605–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bajpai VK, Khan I, Shukla S, Kang SM, Aziz F, Tripathi KM, Saini D, Cho HJ, Su Heo N, Sonkar SK, Chen L, Suk Huh Y, Han YK. Multifunctional N-P-doped carbon dots for regulation of apoptosis and autophagy in B16F10 melanoma cancer cells and in vitro imaging applications. Theranostics. 2020;10(17):7841–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mumtaz T, Qindeel M, Rehman AU, Tarhini M, Ahmed N, Elaissari A. Exploiting proteases for cancer theranostic through molecular imaging and drug delivery. Int J Pharm. 2020;587:119712.

    Article  PubMed  CAS  Google Scholar 

  6. Gupta SP, Gupta SD. Cancer-leading proteases: An introduction. InCancer-Leading Proteases. Academic Press; 2020. p. 1–11.

  7. Turk B, Turk D, Turk V. Protease signalling: the cutting edge. EMBO J. 2012;31(7):1630–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yang Y, Hong H, Zhang Y, Cai W. Molecular Imaging of Proteases in Cancer. Cancer Growth Metastasis. 2009;17(2):13–27.

    CAS  Google Scholar 

  9. Verbovšek U, Van Noorden CJ, Lah TT. Complexity of cancer protease biology: Cathepsin K expression and function in cancer progression. Semin Cancer Biol. 2015;35:71–84.

    Article  PubMed  Google Scholar 

  10. Lee KS, Nam GS, Baek J, Kim S, Nam KS. Inhibition of TPA-induced metastatic potential by morin hydrate in MCF-7 human breast cancer cells via the Akt/GSK-3β/c-Fos signaling pathway. Int J Oncol. 2020;56(2):630–40.

    PubMed  CAS  Google Scholar 

  11. Wang CH, Wang LK, Wu CC, Chen ML, Kuo CY, Shyu RY, Tsai FM. Cathepsin V Mediates the Tazarotene-induced Gene 1-induced Reduction in Invasion in Colorectal Cancer Cells. Cell Biochem Biophys. 2020;78(4):483–94.

    Article  PubMed  CAS  Google Scholar 

  12. Udukala DN, Wendel SO, Wang H, Yapa AS, Covarrubias-Zambrano O, Janik K, Gadbury G, Troyer DL, Bossmann SH. Early detection of non-small cell lung cancer in liquid biopsies by ultrasensitive protease activity analysis. J Cancer Metastasis Treat. 2020;7:6.

    Google Scholar 

  13. Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, Eatemadi R, Sadroddiny E. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother. 2017;86:221–31.

    Article  PubMed  CAS  Google Scholar 

  14. Trezza A, Cicaloni V, Pettini F, Spiga O. Potential roles of protease inhibitors in anticancer therapy. In Cancer-Leading Proteases. Academic Press; 2020 Jan 1. p. 13–49.

  15. Morlat P, Roussillon C, Henard S, Salmon D, Bonnet F, Cacoub P, Georget A, Aouba A, Rosenthal E, May T, Chauveau M, Diallo B, Costagliola D, Chene G, ANRS EN20 Mortalité 2010 Study Group. Causes of death among HIV-infected patients in France in 2010 (national survey): trends since 2000. AIDS. 2014;28(8):1181–91.

    Article  PubMed  Google Scholar 

  16. Zucman D, Mellot F, Couderc L. HIV-Associated Cancers and Related Diseases. N Engl J Med. 2018;378(22):2144–5.

    Article  PubMed  Google Scholar 

  17. Pontiki E, Peperidou A, Fotopoulos I, Hadjipavlou-Litina D. Inhibitors of HIV protease in cancer therapy. InCancer-Leading Proteases. Academic Press; 2020 Jan 1. p. 165–82.

  18. Andrade CH, Freitas LM, Oliveira VD. Twenty-six years of HIV science: an overview of anti-HIV drugs metabolism. Brazilian J Pharm Sci. 2011;47(2):209–30.

    Article  CAS  Google Scholar 

  19. Soriano V, Fernandez-Montero JV, Benitez-Gutierrez L, Mendoza C, Arias A, Barreiro P, Peña JM, Labarga P. Dual antiretroviral therapy for HIV infection. Expert Opin Drug Saf. 2017;16(8):923–32.

    Article  PubMed  CAS  Google Scholar 

  20. Perry CM, Frampton JE, McCormack PL, Siddiqui MA, Cvetković RS. Nelfinavir: a review of its use in the management of HIV infection. Drugs. 2005;65(15):2209–44.

    Article  PubMed  CAS  Google Scholar 

  21. Anaya-Ruiz M, Bandala C, Landeta G, Martínez-Morales P, Zumaquero-Rios JL, Sarracent-Pérez J, Pérez-Santos M. Nanostructured systems in advanced drug targeting for the cancer treatment: recent patents. Recent Pat Anticancer Drug Discov. 2019;14(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  22. Ekman B, Sjöholm I. Improved stability of proteins immobilized in microparticles prepared by a modified emulsion polymerization technique. J Pharm Sci. 1978;67(5):693–6.

    Article  PubMed  CAS  Google Scholar 

  23. Yan C, Resau JH, Hewetson J, West M, Rill WL, Kende M. Characterization and morphological analysis of protein-loaded poly (lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique. J Control Release. 1994;32(3):231–41.

    Article  CAS  Google Scholar 

  24. Avgerinos A. Controlled release microspheres prepared by using an emulsion solvent-diffusion technique as a tool in design of new Antidotes. InNBC Risks Current Capabilities and Future Perspectives for Protection. Springer, Dordrecht; 1999. p. 401–410.

  25. Viswanathan NB, Thomas PA, Pandit JK, Kulkarni MG, Mashelkar RA. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique. J Control Release. 1999;58(1):9–20.

    Article  PubMed  CAS  Google Scholar 

  26. Schugens C, Laruelle N, Nihant N, Grandfils C, Jérôme R, Teyssie P. Effect of the emulsion stability on the morphology and porosity of semicrystalline poly l-lactide microparticles prepared by w/o/w double emulsion-evaporation. J Control Release. 1994;32(2):161–76.

    Article  CAS  Google Scholar 

  27. Li SP, Kowarski CR, Feld KM, Grim WM. Recent advances in microencapsulation technology and equipment. Drug Dev Ind Pharm. 1988;14(2–3):353–76.

    Article  CAS  Google Scholar 

  28. Lu Y, Park K. Microencapsulation: methods and pharmaceutical applications. Encyclopedia of pharmaceutical science and technology, 4th edn. Informa Healthcare, USA; 2012.

  29. Yeh KC, Deutsch PJ, Haddix H, Hesney M, Hoagland V, Ju WD, Justice SJ, Osborne B, Sterrett AT, Stone JA, Woolf E, Waldman S. Single-dose pharmacokinetics of indinavir and the effect of food. Antimicrob Agents Chemother. 1998;42(2):332–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chowdary KR, Rao NK, Malathi K. Ethylcellulose microspheres of glipizide: Characterization, in-vitro and in-vivo evaluation. Indian J Pharm Sci. 2004;66(4):412.

    CAS  Google Scholar 

  31. Patil SV, Behera AL, Sahoo SK. Consequences of formulation variables on physicochemical properties of indinavir sulfate microspheres. Jordan J Pharm Sci. 2011;108(399):1–20.

    Google Scholar 

  32. Leach K, Noh K, Mathiowitz E. Effect of manufacturing conditions on the formation of double-walled polymer microspheres. J Microencapsul. 1999;16(2):153–67.

    Article  PubMed  CAS  Google Scholar 

  33. Mateovic T, Kriznar B, Bogataj M, Mrhar A. The influence of stirring rate on biopharmaceutical properties of Eudragit RS microspheres. J Microencapsul. 2002;19(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  34. Garud N, Garud A. Preparation and in-vitro evaluation of metformin microspheres using non-aqueous solvent evaporation technique. Trop J Pharm Res. 2012;11(4):577–83.

    Article  CAS  Google Scholar 

  35. Lee J, Park TG, Choi H. Effect of formulation and processing variables on the characteristics of microspheres for water-soluble drugs prepared by w/o/o double emulsion solvent diffusion method. Int J Pharm. 2000;196(1):75–83.

    Article  PubMed  CAS  Google Scholar 

  36. Sahoo SK, Mallick AA, Barik BB, Senapati PC. Formulation and in-vitro Evaluation of Eudragit® Microspheres of Stavudine. Trop J Pharm Res. 2005;4(1):369–75.

    Google Scholar 

  37. Tayade PT, Kale RD. Encapsulation of water-insoluble drug by a cross-linking technique: effect of process and formulation variables on encapsulation efficiency, particle size, and in vitro dissolution rate. AAPS PharmSci. 2004;6(1):E12.

    Article  PubMed  Google Scholar 

  38. Chatterjee B, Amalina N, Sengupta P, Mandal UK. Mucoadhesive polymers and their mode of action: A recent update. J App Pharm Sci. 2017;7(5):195–203.

    CAS  Google Scholar 

  39. Kadam NR, Suvarna V. Microsphere: a brief review. Asian J Biomed Pharm Sci. 2015;5(47):13.

    Article  Google Scholar 

  40. Dey S, Pramanik S, Malgope A. Formulation and optimization of sustained release Stavudine microspheres using response surface methodology. ISRN Pharm. 2011;2011: 627623.

    PubMed  PubMed Central  Google Scholar 

  41. Nagpal M, Maheshwari D, Rakha P, Dureja H, Goyal S, Dhingra G. Formulation development and evaluation of alginate microspheres of Ibuprofen. J Young Pharm. 2012;4(1):13–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Pandey N, Sah NA, Mahara K. Formulation and Evaluation of Floating Microsphere of Nateglinide. Int J Pharm Sci Res. 2016;7(11):453–64.

    CAS  Google Scholar 

  43. Guideline IH. Validation of analytical procedures: text and methodology. Q2 (R1). 2005;1(20):05.

  44. The Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC Interntional. In Latimer GWJ, editor. Guidelines for Standard Method Performance Requirements. 19th ed. Gaithersburg, Maryland, USA: AOAC International; 2012. p. 9.

  45. Gonzalez AG, Herrador MA. A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Analyt Chem. 2007;26(3):227–38.

    Article  Google Scholar 

  46. Murti YB, Hartini YS, Hinrichs WL, Frijlink HW, Setyaningsih D. UV-Vis spectroscopy to enable determination of the dissolution behavior of solid dispersions containing curcumin and piperine. J Young Pharm. 2019;11(1):26.

    Article  CAS  Google Scholar 

  47. Haznedar S, Dortunç B. Preparation and in vitro evaluation of Eudragit microspheres containing acetazolamide. Int J Pharm. 2004;269(1):131–40.

    Article  PubMed  CAS  Google Scholar 

  48. Venkatesan P, Manavalan R, Valliappan K. Preparation and evaluation of sustained release loxoprofen loaded microspheres. J Basic Clin Pharm. 2011;2(3):159–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Joshi B, Joshi A. Ultrasound-based drug delivery systems. InBioelectronics and Medical Devices. Woodhead Publishing; 2019 Jan 1;p. 241–260.

  50. Fitzpatrick J. Powder properties in food production systems. In Handbook of food powders. Woodhead Publishing; 2013 Jan 1. p. 285–308.

  51. Yuce M, Canefe K. Indomethacin-loaded microspheres: preparation, characterization and in-vitro evaluation regarding ethylcellulose matrix material. Turk J Pharm Sci. 2008;5(3):129–42.

    CAS  Google Scholar 

  52. Yu HL, Feng ZQ, Zhang JJ, Wang YH, Ding DJ, Gao YY, Zhang WF. The evaluation of proanthocyanidins/chitosan/lecithin microspheres as sustained drug delivery system. Biomed Res Int. 2018;24(2018):9073420.

    Google Scholar 

  53. Ayon NJ, Hasan I, Islam MS, Reza MS. Preparation and characterization of gliclazide incorporated cellulosic microspheres: studies on drug release, compatibility and micromeritics. Dhaka Univ J Pharm Sci. 2014;13(2):149–66.

    Article  Google Scholar 

  54. Phutane P, Shidhaye S, Lotlikar V, Ghule A, Sutar S, Kadam V. In vitro Evaluation of Novel Sustained Release Microspheres of Glipizide Prepared by the Emulsion Solvent Diffusion-Evaporation Method. J Young Pharm. 2010;2(1):35–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Sahoo SK, Barik S, Dehury G, Dhala S, Kanungo S, Barik BB, Puhan KK. Evaluation of controlled release theophylline microspheres prepared with cellulose acetate using solvent evaporation method. Trop J Pharm Res. 2011;10(2).

  56. Valizadeh H, Jelvehgari M, Nokhodchi A, Rezapour M. Effect of formulation and processing variables on the characteristics of tolmetin microspheres prepared by double emulsion solvent diffusion method. Indian J Pharm Sci. 2010;72:72–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nath B, Kanta Nath L, Mazumder B, Kumar P, Sharma N, Pratap Sahu B. Preparation and Characterization of salbutamol sulphate loaded ethyl cellulose microspheres using water-in-oil-oil emulsion technique. Iran J Pharm Res. 2010;9(2):97–105.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Rajkumar M, Bhise S. Carbamazepine-loaded porous microspheres for short-term sustained drug delivery. J Young Pharm. 2010;2(1):7–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Das MK, Rao KR. Evaluation of zidovudine encapsulated ethyl cellulose microspheres prepared by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion technique. Acta Pol Pharm. 2006;63(2):141–8.

    PubMed  CAS  Google Scholar 

  60. Saha N, Hasan I, Nazmi M, Reza MS. Design and development of sustained release microspheres of ibuprofen by emulsification solvent evaporation method using polymeric blend. Bangladesh Pharm J. 2013;16(1):39–44.

    Article  Google Scholar 

  61. Dewan I, Miah S, Islam SM, Rana S. Design, characterization and in-vitro evaluation of different cellulosic acrylic and methacrylic polymers loaded aceclofenac microspheres. Pakistan J Pharm Sci. 2014;27(5).

  62. Sahoo SK, Sahoo SK, Behera A, Patil SV, Panda SK. Formulation, in-vitro drug release study and anticancer activity of 5-fluorouracil loaded gellan gum microbeads. Acta Pol Pharm. 2013;70(1):123–7.

    PubMed  CAS  Google Scholar 

  63. Harms PG, Ojeda SR. A rapid and simple procedure for chronic cannulation of the rat jugular vein. J Appl Physiol. 1974;36(3):391–2.

    Article  PubMed  CAS  Google Scholar 

  64. Hamidi M. Simple and sensitive high-performance liquid chromatography method for the quantitation of indinavir in rat plasma and central nervous system. J Sep Sci. 2006;29(5):620–7.

    Article  PubMed  CAS  Google Scholar 

  65. Kurd M, Sadegh Malvajerd S, Rezaee S, Hamidi M, Derakhshandeh K. Oral delivery of indinavir using mPEG-PCL nanoparticles: preparation, optimization, cellular uptake, transport and pharmacokinetic evaluation. Artif Cells Nanomed Biotechnol. 2019;47(1):2123–33.

    Article  PubMed  CAS  Google Scholar 

  66. Yu RH, Cao YX. A method to determine pharmacokinetic parameters based on andante constant-rate intravenous infusion. Sci Rep. 2017;7(1):13279.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee J, Lee E, Kim D, Lee J, Yoo J, Koh B. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J Ethnopharmacol. 2009;122(1):143–8.

    Article  PubMed  CAS  Google Scholar 

  68. Higuchi TJ. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963;52(12):1145–9.

    Article  PubMed  CAS  Google Scholar 

  69. Siepmann J, Peppas NA. Mathematical modeling of controlled drug delivery. Adv Drug Del Rev. 2001;48(2–3):137–8.

    CAS  Google Scholar 

  70. Crank J. The Mathematics of Diffusion. Oxford: Oxford Science Publications; 1975.

    Google Scholar 

  71. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Rel. 1987;5(1):23–36.

    Article  CAS  Google Scholar 

  72. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  PubMed  CAS  Google Scholar 

  73. Ramteke KH, Dighe PA, Kharat AR, Patil SV. Mathematical models of drug dissolution: a review. Sch Acad J Pharm. 2014;3(5):388–96.

    Google Scholar 

  74. Wu IY, Bala S, Škalko-Basnet N, di Cagno MP. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur J Pharm Sci. 2019;1(138): 105026.

    Article  Google Scholar 

  75. Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev. 2018;38(4):1295–331.

    Article  PubMed  CAS  Google Scholar 

  76. Sgadari C, Barillari G, Toschi E, Carlei D, Bacigalupo I, Baccarini S, Palladino C, Leone P, Bugarini R, Malavasi L, Cafaro A, Falchi M, Valdembri D, Rezza G, Bussolino F, Monini P, Ensoli B. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med. 2002;8(3):225–32.

    Article  PubMed  CAS  Google Scholar 

  77. Morris D, Valle S, Akhter J, Pillai K, inventors. Mucpharm Pty Ltd, assignee. Formulations containing mucin-affecting proteases. United States patent application US 16/975,058. 2021 Jan 14.

  78. Mohamed MM, Sloane BF. Multifunctional enzymes in cancer. Nat Rev Cancer. 2006;6(10):764–75.

    Article  PubMed  CAS  Google Scholar 

  79. Gocheva V, Joyce JA. Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle. 2007;6(1):60–4.

    Article  PubMed  CAS  Google Scholar 

  80. Zucker S, Cao J, Chen WT. Critical appraisal of the use of matrix metalloproteinase inhibitors in cancer treatment. Oncogene. 2000;19(56):6642–50.

    Article  PubMed  CAS  Google Scholar 

  81. Vasiljeva O, Turk B. Dual contrasting roles of cysteine cathepsins in cancer progression: apoptosis versus tumour invasion. Biochimie. 2008;90(2):380–6.

    Article  PubMed  CAS  Google Scholar 

  82. Matarrese P, Ascione B, Ciarlo L, Vona R, Leonetti C, Scarsella M, Mileo AM, Catricalà C, Paggi MG, Malorni W. Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in-vitro and in-vivo study. Mol cancer. 2010;9(1):1–4.

    Article  Google Scholar 

  83. Joyce JA, Hanahan D. Multiple roles for cysteine cathepsins in cancer. Cell Cycle. 2004;3(12):1516–9.

    Article  PubMed  CAS  Google Scholar 

  84. Tu C, Ortega-Cava CF, Chen G, Fernandes ND, Cavallo-Medved D, Sloane BF, Band V, Band H. Lysosomal cathepsin B participates in the podosome-mediated extracellular matrix degradation and invasion via secreted lysosomes in v-Src fibroblasts. Cancer Res. 2008;68(22):9147–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Jedeszko C, Sloane BF. Cysteine cathepsins in human cancer. Biol Chem. 2004;385(11):1017–27.

    Article  PubMed  CAS  Google Scholar 

  86. Hirai K, Yokoyama M, Asano G, Tanaka S. Expression of cathepsin B and cystatin C in human colorectal cancer. Hum Pathol. 1999;30(6):680–6.

    Article  PubMed  CAS  Google Scholar 

  87. Kandalaft PL, Chang KL, Ahn CW, Traweek ST, Mehta P, Battifora H. Prognostic significance of immunohistochemical analysis of cathepsin D in low-stage breast cancer. Cancer. 1993;71(9):2756–63.

    Article  PubMed  CAS  Google Scholar 

  88. Michl P. Targeting cathepsins: a new glimmer of hope for pancreatic cancer therapy? Gut. 2012;61(6):790–1.

    Article  PubMed  CAS  Google Scholar 

  89. Saleh Y, Wnukiewicz J, Trziszka T, Siewinski M, Ziolkowski P, Kopec W. Cathepsin B and cysteine protease inhibitors in human tongue cancer: Correlation with tumor staging and in-vitro inhibition of cathepsin B by chicken cystatin. J Cancer Molecules. 2006;15(2):67–72.

    Google Scholar 

  90. Nakamura K, Hongo A, Kodama J, Abarzua F, Nasu Y, Kumon H, Hiramatsu Y. Expression of matriptase and clinical outcome of human endometrial cancer. Anticancer Res. 2009;29(5):1685–90.

    PubMed  Google Scholar 

  91. Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, Dickson RB, Reagan-Shaw S, Jarrard DF, Mukhtar H. A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev. 2006;15(2):217–27.

    Article  PubMed  CAS  Google Scholar 

  92. Vetvicka V, Vetvickova J, Fusek M. Anti-human procathepsin D activation peptide antibodies inhibit breast cancer development. Breast Cancer Res Treat. 1999;57(3):261–9.

    Article  PubMed  CAS  Google Scholar 

  93. Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prébois C, Rochefort H, Vignon F. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237(2):167–79.

    Article  PubMed  CAS  Google Scholar 

  94. Rasmussen HS, McCann PP. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. Pharmacol Ther. 1997;75(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  95. Bramhall SR, Rosemurgy A, Brown PD, Bowry C, Buckels JA, Marimastat Pancreatic Cancer Study Group. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol. 2001;19(15):3447–55.

    Article  PubMed  CAS  Google Scholar 

  96. Verma S, Tonk RK. Rhomboid proteases leading to cancer: Structures, functions, and inhibition. InCancer-Leading Proteases. Academic Press; 2020. p. 327–357.

  97. Batich CD, Leckey A, Vauthey JN, inventors. University of Florida, assignee. Microspheres for use in the treatment of cancer. United States patent US 6,602,524. 2003 Aug 5.

  98. Sun W, Zhang X, Wang T, Leng G, Sun K, Li Y, Liu W, inventors. Shandong Luye Pharmaceutical Co Ltd, assignee. Pharmaceutical compositions of goserelin sustained release microspheres. United States patent US 10,258,572. 2019 Apr 16.

  99. Reb P, inventor. Biosphere Medical Inc, assignee. Microspheres containing therapeutic agents and related methods of use. United States patent application US 16/534,096. 2020 Jan 30.

  100. Zhang L, Liu R, Caihua NI, Bai X, Gang SH, inventors. Jiangnan University, assignee. Method for Preparing Modified Sodium Alginate Embolization Microsphere. United States patent application US 15/756,021. 2019 Jan 10.

  101. Cade D, Tapner M, inventors. Sirtex Medical Ltd, assignee. Treatment of neoplasia. United States patent US 10,849,900. 2020.

  102. Aneja G, Dave U, Vadodaria K. Simultaneous estimation of piperine, quercetin and curcumin in a mixture using UV-Visible spectrophotometer and method validation. IJTA. 2012;8:14–7.

    Google Scholar 

  103. Moussa D, Kassab R, Yammine P. Study of different processing parameters for Polylactic acid microspheres formulations. Int J Pharm Sci Res. 2014;5(10):4176.

    Google Scholar 

  104. Pachuau L, Sarkar S, Mazumder B. The study of the effects of surfactants on ethyl cellulose microspheres containing salbutamol sulphate. Scholar Res Lib J. 2009;1(1):65–74.

    Google Scholar 

  105. Dhakar RC. From formulation variables to drug entrapment efficiency of microspheres: a technical review. J Drug Deliv Therap. 2012;2(6).

  106. Pooresmaeil M, Namazi H. Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. Int J Biol Macromol. 2020;1(162):501–11.

    Article  Google Scholar 

  107. Hong W, Zhang Q, Jin H, Song L, Tan Y, Luo L, Guo F, Zhao X, Xiao P. Roles of strontium and hierarchy structure on the in-vitro biological response and drug release mechanism of the strontium-substituted bioactive glass microspheres. Mater Sci Eng C. 2020;1(107):110336.

    Article  Google Scholar 

  108. Omari DM, Akkam Y, Sallam A. Drug-Excipient Interactions: An Overview on Mechanisms and Effects on Drug Stability and Bioavailability. ARSCB. 2021;22:8402–29.

    Google Scholar 

  109. Zhong H, Gao X, Qiu Z, Zhao C, Zhang X, Guo B, Li G. Formulation and evaluation of β-cyclodextrin polymer microspheres for improved HTHP filtration control in water-based drilling fluids. J Mol Liq. 2020;8: 113549.

    Article  Google Scholar 

  110. Piazza RD, Brandt JV, Gobo GG, Tedesco AC, Primo FL, Marques RF, Junior MJ. mPEG-co-PCL nanoparticles: The influence of hydrophobic segment on methotrexate drug delivery. Colloids Surf A Physicochem Eng Aspects. 2018;20(555):142–9.

    Article  Google Scholar 

  111. Kandadi P, Syed MA, Goparaboina S, Veerabrahma K. Brain specific delivery of pegylated indinavir submicron lipid emulsions. Eur J Pharm Sci. 2011;42(4):423–32.

    Article  PubMed  CAS  Google Scholar 

  112. Singh P, Premkumar L, Mehrotra R, Kandpal HC, Bakhshi AK. Evaluation of thermal stability of indinavir sulphate using diffuse reflectance infrared spectroscopy. J Pharm Biomed Anal. 2008;47(2):248–54.

    Article  PubMed  CAS  Google Scholar 

  113. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X, Qian Z. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3(4):1558–67.

    Article  PubMed  CAS  Google Scholar 

  114. Xue B, Wang Y, Tang X, Xie P, Wang Y, Luo F, Wu C, Qian Z. Biodegradable self-assembled MPEG-PCL micelles for hydrophobic oridonin delivery in vitro. J Biomed Nanotechnol. 2012;8(1):80–9.

    Article  PubMed  CAS  Google Scholar 

  115. Imperiale JC, Bevilacqua G, Rosa PD, Sosnik A. Production of pure indinavir free base nanoparticles by a supercritical anti-solvent (SAS) method. Drug Dev Ind Pharm. 2014;40(12):1607–15.

    Article  PubMed  CAS  Google Scholar 

  116. Meng D, Dong L, Wen Y, Xie Q. Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater Sci Eng C. 2015;1(47):266–72.

    Article  Google Scholar 

  117. Prosapio V, De Marco I, Reverchon E. PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chem Engineer J. 2016;15(292):264–75.

    Article  Google Scholar 

  118. O’Donnell PB, McGinity JW. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev. 1997;28(1):25–42.

    Article  PubMed  CAS  Google Scholar 

  119. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60(4):110–1.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Cipla, Ltd, Mumbai, India, for providing indinavir sulfate. Furthermore, the writers are obliged to Indian Institute of Technology (IIT), Kharagpur, India, University Science of Instrumental Centre (USIC), Jadavpur, Kolkata, India, Kanak Manjari Institute of Pharmaceutical Sciences Raurkela, Odisha, India, and University Department of Pharmaceutical Sciences and Utkal University, Bhubaneswar, Odisha, India for support in carrying out characterization studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Kumar Mohapatra.

Ethics declarations

Ethics Approval and Consent to Participate

The protocol was approved by the Institutional Animal Ethics Committee (IEAC) of the Post Graduate Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar-751004, Orissa, India.

Human and Animal Rights

No humans were used for studies that is the basis of this research. The whole protocol and procedures involving laboratory animals are strictly in compliance with the guidelines of the Committee for Control and Supervision of Experiments on Animals (CPCSEA), a statutory Committee, which is established under Chapter 4, Sect. 15(1) of the Prevention of Cruelty to Animals Act 1960.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, P.K., Srivastava, R., Varshney, K.K. et al. A Computational Approach for Exploring Indinavir as a Potent Protease Inhibitor and Development of Its Microsphere for Anticancer Activity. J Pharm Innov 18, 1838–1869 (2023). https://doi.org/10.1007/s12247-023-09747-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09747-0

Keywords

Navigation