Skip to main content

Advertisement

Log in

Effect of Presence of Aliphatic Glycine in the Anti-cancer Platinum Complex Structure on Human Serum Albumin Binding

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

In this work, a new water-soluble Pt(II) complex was synthesized with aliphatic glycine ligand with a formula of cis-[Pt(NH3)2(isopentylgly)]NO3, as an anti-cancer drug, and characterized. To determine the binding constant of the human serum albumin (HSA, the most abundant carrier proteins in the human circulatory system) to this complex and the binding site of the complex on HSA, the melting point of HSA and the kinetics of this interaction were investigated to introduce an anti-breast cancer drug with fewer side effects.

Methods

HSA interaction with the complex was studied via a spectroscopic method at 27 and 37 °C and physiological situation (I = 10 mM, pH = 7.4) and molecular docking.

Results

The toxicity value of this complex was obtained against the human cancer breast cell line of MCF-7. The thermodynamic parameters of enthalpy and entropy were also achieved in the empirical procedure. Due to the spontaneity of the interaction, Gibbs free energy variation was obtained negative. The binding constant of this complex to HSA was 3.9 × 105 (M−1). Empirical results showed that the quenching mechanism was static. Hill coefficients, Hill constant, complex aggregation number around protein, number of binding sites, and protein melting temperature with complex were obtained. The kinetics of this interaction was also investigated, which showed that this interaction follows a second-order kinetic. The molecular docking data indicated that the position of the interaction of complex on the protein was the site I in the sub-second IIA. Also, the hydrogen bonding and the hydrophobic interaction as the dominant binding forces were seen in complex–HSA formation.

Conclusion

This interaction with positive cooperativity was recognized via a superior hydrogen bond. The reasonable binding constant was also obtained, which could ultimately be a good option as an anti–breast cancer drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

HSA:

Human serum albumin

PDB:

Protein Data Bank

References

  1. Kazemi Z, Rudbari HA, Sahihi M, Mirkhani V, Moghadam M, Tangestaninejad S, et al. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: experimental, molecular docking, and ONIOM computational study. J Photochem Photobiol B. 2016;162:448–62. https://doi.org/10.1016/j.jphotobiol.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  2. Hoang H, Manyanga F, Morakinyo MK, Pinkert V, Sarwary F, Fish DJ, et al. Effects of selective biotinylation on the thermodynamic stability of human serum albumin. J Biophys Chem. 2016;7(1):9–29. https://doi.org/10.4236/ibpc.2016.71002.

    Article  CAS  Google Scholar 

  3. Topală T, Bodoki A, Oprean L, Oprean R. Bovine serum albumin interactions with metal complexes. Clujul Med. 2014;87:215–9. https://doi.org/10.15386/cjmed-357.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhu M, Cui X, Zhang S, Liu L, Han Z, Gao ZE. The structures, cytotoxicity, apoptosis and molecular docking controlled by the aliphatic chain of palladium (II) complexes. J Inorg Biochem. 2016;157:34–45. https://doi.org/10.1016/j.jinorgbio.2016.01.016.

    Article  CAS  PubMed  Google Scholar 

  5. Kantoury M, Eslami Moghadam M, Tarlani AA, Divsalar A. Structure effect of some new anticancer Pt (II) complexes of amino acid derivatives with small branched or linear hydrocarbon chains on their DNA interaction. Chem Boil Drug Dis. 2016;88(1):76–87. https://doi.org/10.1111/cbdd.12735.

    Article  CAS  Google Scholar 

  6. Hadian Rasanani S, Eslami Moghadam M, Soleimani E, Divsalar A, Ajloo A, Tarlani A, et al. Anticancer activity of new imidazole derivative of 1R, 2R-diaminocyclohexane palladium and platinum complexes as DNA fluorescent probes. J Biomol Struct Dyn. 2018;36(12):3058–76. https://doi.org/10.1080/07391102.2017.1385538.

    Article  CAS  PubMed  Google Scholar 

  7. Aghaee E, Ghasemi JB, Manouchehri F, Balalaie S. Combined docking, molecular dynamics simulations and spectroscopic studies for the rational design of a dipeptide ligand for affinity chromatography separation of human serum albumin. J Mol Model. 2014;20(10):2446. https://doi.org/10.1007/s00894-014-2446-7.

    Article  CAS  PubMed  Google Scholar 

  8. Ajmal MR, Zaidi N, Alam P, Nusrat S, Siddiqi MK, Badr G, et al. Insight into the interaction of antitubercular and anticancer compound clofazimine with human serum albumin: spectroscopy and molecular modeling. J Biomol Struct Dyn. 2017;35(1):46–57. https://doi.org/10.1080/07391102.2015.1132258.

    Article  CAS  PubMed  Google Scholar 

  9. Shamsi A, Ahmed A, Bano B. Probing the interaction of anticancer drug temsirolimus with human serum albumin: molecular docking and spectroscopic insight. J Biomol Struct Dyn. 2018;36:1479–89. https://doi.org/10.1080/07391102,2017,1326320.

    Article  CAS  PubMed  Google Scholar 

  10. Shen F, Liu YX, Li SM, Jiang CK, Wang BF, Xiong YH, et al. Synthesis, crystal structures, molecular docking and in vitro cytotoxicity studies of two new copper (ii) complexes: special emphasis on their binding to HSA. New J Chem. 2017;41(21):12429–41. https://doi.org/10.1039/c7nj02351k.

    Article  CAS  Google Scholar 

  11. Yasmeen S. Exploring thermodynamic parameters and the binding energetics of berberine chloride to bovine serum albumin (BSA): spectroscopy, isothermal titration calorimetry, and molecular docking techniques. Thermochim Acta. 2017;655:76–86. https://doi.org/10.1016/j.tca.2017.06.010.

    Article  CAS  Google Scholar 

  12. Kong L, Hu J, Qin D, Yan P. Interaction of ifosfamide-loaded superparamagnetic iron oxide nanoparticles with human serum albumin—a biophysical study. J Pharm Innov. 2015;10(1):13–20. https://doi.org/10.1007/s12247-014-9199-9.

    Article  Google Scholar 

  13. Ojha H, Mishra K, Hassan MI, Chaudhury NK. Spectroscopic and isothermal titration calorimetry studies of binding interaction of ferulic acid with bovine serum albumin. Thermochim Acta. 2012;2012(548):56–64. https://doi.org/10.1016/j.tca.2012.08.016.

    Article  CAS  Google Scholar 

  14. Trynda-Lemiesz L, Wiglusz K. Effects of glycation on meloxicam binding to human serum albumin. J Mol Struct. 2011;995(1–3):35–40. https://doi.org/10.1016/j.molstruc.2011.03.037.

    Article  CAS  Google Scholar 

  15. Tang J, Lian N, Bi C, Li W. Analysis of eupatilin-human serum albumin interactions by means of spectroscopic and computational modeling. J Pharm Pharmacol. 2007;59(5):637–43. https://doi.org/10.1211/jpp.59.5.0003.

    Article  CAS  PubMed  Google Scholar 

  16. Mohammadgholi A, Leilabadi-Asl A, Divsalar A, Eslami Moghadam M. Multi-spectroscopic studies of the interaction of new synthesized platin complex with human carrier protein of serum albumin. J Biomol Struct Dyn. 2020:1–6. https://doi.org/10.1080/07391102.2020.1745690.

  17. Kabir MZ, Tee WV, Mohamad SB, Alias Z, Tayyab S. Tayyab, interaction of an anticancer drug, gefitinib with human serum albumin: insights from fluorescence spectroscopy and computational modeling analysis. RSC Adv. 2016;6(94):91756–67. https://doi.org/10.1039/C6RA12019A.

    Article  CAS  Google Scholar 

  18. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB. Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed. 2006;41:393–9. https://doi.org/10.1016/j.jpba.2005.11.037.

    Article  CAS  Google Scholar 

  19. Abyaneh FSS, Moghadam ME, Divsalar A, Ajloo D, Sadr MH. Improving anticancer activity and solubility of cisplatin by methyl glycine and methylamine ligands against human breast adenocarcinoma cell line. Appl Biochem Biotechnol. 2018;186(2):271–91. https://doi.org/10.1007/s12010-018-2715-5.

    Article  CAS  Google Scholar 

  20. Hadian Rasanani S, Eslami Moghadam M, Soleimani E, Divsalar A, Tarlani A. Improving the activity of anticancer oxalipalladium analog by the modification of oxalate group with isopentylglycine. J Coord Chem. 2017;70(22):3769–89. https://doi.org/10.1080/00958972.2017.1395417.

    Article  CAS  Google Scholar 

  21. Becke AD. Density-functional thermochemistry: the role of extract exchange. J Chem Phys. 1993;98:5648–52. https://doi.org/10.1063/1.464913.

    Article  CAS  Google Scholar 

  22. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys. 1982;77(7):3654–65. https://doi.org/10.1063/1.444267.

    Article  CAS  Google Scholar 

  23. Bursulaya BD, Totrov M, Abagyan R, Brooks CL. Comparative study of several algorithms for flexible ligand docking. J Comput Aid Mol Des. 2003;17(11):755–63. https://doi.org/10.1023/b:jcam.0000017496.76572.6f.

    Article  CAS  Google Scholar 

  24. Heydari A, Mansouri-Torshizi H. Design, synthesis, characterization, cytotoxicity, molecular docking and analysis of binding interactions of novel acetylacetonatopalladium (II) alanine and valine complexes with CT-DNA and BSA. RSC Adv. 2016;6(98):96121–37. https://doi.org/10.1039/C6RA18803F.

    Article  CAS  Google Scholar 

  25. Fu XB, Liu DD, Lin Y, Hu W, Mao ZW, Le XY. Water-soluble DNA minor groove binders as potential chemotherapeutic agents: synthesis, characterization, DNA binding and cleavage, antioxidation, cytotoxicity and HSA interactions. Dalton T. 2014;43(23):8721–37. https://doi.org/10.1039/c3dt53577k.

    Article  CAS  Google Scholar 

  26. Bordbar AK, Saadati Z, Sohrabi N. Analysis of ligand binding process using the binding capacity concept. Acta Biochim Pol. 2004;51(4):963–70 10/045104963.

    CAS  PubMed  Google Scholar 

  27. Hosseinzadeh R, Bordbar AK, Matin AA, Maleki R. Potentiometric study of cetylpyridinium chloride cooperative binding to anionic azo-dyes. J Braz Chem Soc. 2007;18(2):359–63. https://doi.org/10.1590/S0103-50532007000200017.

    Article  CAS  Google Scholar 

  28. Heydari M, Moghadam ME, Tarlani A, Farhangian H. DNA as a target for anticancer phen-imidazole Pd (II) complexes. Appl Biochem Biotechnol. 2017;182(1):110–27. https://doi.org/10.1007/s12010-016-2314-2.

    Article  CAS  PubMed  Google Scholar 

  29. Bordbar AK, Moosavi-Movahedi AA, Amini MK. A microcalorimetry and binding study on the interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin. Thermochim Acta. 2003;400(1–2):95–100. https://doi.org/10.1016/S0040-6031(02)00483-5.

    Article  CAS  Google Scholar 

  30. Proetto MT, Liu W, Molchanov A, Sheldrick WS, Hagenbach AA, Abram U, et al. Synthesis, characterization, and in vitro antiproliferative activity of [salophene] platinum (II) complexes. Chem Med Chem. 2014;9(6):1176–87. https://doi.org/10.1002/cmdc.201402123.

    Article  CAS  PubMed  Google Scholar 

  31. Liu P, Liu J, Zhang YQ, Wu BY, Wang KZ. Synthesis, DNA binding and photocleavage, and cellular uptake of an alkyl chain-linked dinuclear ruthenium (II) complex. J Photochem Photobiol B. 2015;143:89–99. https://doi.org/10.1016/j.jphotobiol.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  32. Chatterjee T, Pal A, Dey S, Chatterjee BK, Chakrabarti P. Interaction of virstatin with human serum albumin: spectroscopic analysis and molecular modeling. PLoS One. 2012;7(5):e37468. https://doi.org/10.1371/journal.pone.0037468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao D, Tian Y, Bi S, Chen Y, Yu A, Zhang H. Studies on the interaction of colloidal gold and serum albumins by spectral methods. Spectrochim Acta A. 2005;62(4–5):1203–8. https://doi.org/10.1016/j.saa.2005.04.026.

    Article  CAS  Google Scholar 

  34. Gupta RK, Kumar A, Paitandi RP, Singh RS, Mukhopadhyay S, Verma SP, et al. Heteroleptic arene Ru (II) dipyrrinato complexes: DNA, protein binding and anti-cancer activity against the ACHN cancer cell line. Dalton S. 2016;45(16):7163–77. https://doi.org/10.1039/C6DT00446F.

    Article  CAS  Google Scholar 

  35. Villarreal W, Colina-Vegas L, Rodrigues de Oliveira C, Tenorio JC, Ellena J, Gozzo FC, et al. Chiral platinum (II) complexes featuring phosphine and chloroquine ligands as cytotoxic and monofunctional DNA-binding agents. Inorg Chem. 2015;54:11709–20. https://doi.org/10.1021/acs.inorgchem.5b01647.

    Article  CAS  PubMed  Google Scholar 

  36. Divsalar A, Razmi M, Saboury AA, Mansouri-Torshizi H, Ahmad F. Biological evaluation of a new synthesized Pt (II) complex by cytotoxic and spectroscopic studies. Cell Biochem Biophys. 2015;71(3):1415–24. https://doi.org/10.1007/s12013-014-0364-z.

    Article  CAS  PubMed  Google Scholar 

  37. Shao J, Bao WG, Tian H, Li B, Zhao XF, Qiao X, et al. Nuclease activity and protein-binding properties of a novel tetranuclear thiosemicarbazide Pt (II) complex. Dalton T. 2014;43(4):1663–71. https://doi.org/10.1039/c3dt52044g.

    Article  CAS  Google Scholar 

  38. Azimi O, Emami Z, Salari H, Chamani J. Probing the interaction of human serum albumin with norfloxacin in the presence of high-frequency electromagnetic fields: fluorescence spectroscopy and circular dichroism investigations. Molecules. 2011;16(12):9792–818. https://doi.org/10.3390/molecules16129792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guha S, Rawat SS, Chattopadhyay A, Bhattacharyya B. Tubulin conformation and dynamics: a red edge excitation shift study. Biochemistry. 1996;35(41):13426–33. https://doi.org/10.1021/bi961251g.

    Article  CAS  PubMed  Google Scholar 

  40. Jahanban-Esfahlan A, Panahi-Azar V, Sajedi S. Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin. Biopolymers. 2015;103:638–45. https://doi.org/10.1002/bip.22697.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu M, Wang L, Zhang H, Fan S, Wang Z, Li QX, et al. Interactions between tetrahydroisoindoline-1, 3-dione derivatives and human serum albumin via multiple spectroscopy techniques. Environ Sci Pollut Res. 2018;25(2018):17735–48. https://doi.org/10.1007/s11356-018-1955-9.

    Article  CAS  Google Scholar 

  42. Mansouri-Torshizi H, Khosravi F, Ghahghaei A, Shahraki S, Zareian-Jahromi S. Investigation on the interaction of newly designed potential antibacterial Zn (II) complexes with CT-DNA and HAS. J Biomol Struct Dyn. 2018;36(10):2713–37. https://doi.org/10.1080/07391102.2017.1363086.

    Article  CAS  PubMed  Google Scholar 

  43. Xiao Y, Xu K, Wang Q, Xiong X, Huang Y, Li H. Synthesis, structure, and calf-thymus DNA binding of ternary fleroxacin–Cu (ii) complexes. RSC Adv. 2016;6(83):80286–95. https://doi.org/10.1039/C6RA18971G.

    Article  CAS  Google Scholar 

  44. Esteghamat-Panah R, Farrokhpour H, Hadadzadeh H, Abyar F, Rudbari HA. An experimental and quantum chemical study on the non-covalent interactions of a cyclometallated Rh (III) complex with DNA and BSA. RSC Adv. 2016;6:23913–29. https://doi.org/10.1039/C5RA24540K.

    Article  CAS  Google Scholar 

  45. Asadi Z, Mosallaei H, Sedaghat M, Yousefi R. Competitive binding affinity of two lanthanum (III) macrocycle complexes toward DNA and bovine serum albumin in water. J Iran Chem Soc. 2017;14(11):2367–85. https://doi.org/10.1007/s13738-017-1172-3.

    Article  CAS  Google Scholar 

  46. Anjomshoa M, Torkzadeh-Mahani M, Sahihi M, Rizzoli C, Ansari M, Janczak J, et al. Tris-chelated complexes of nickel (II) with bipyridine derivatives: DNA binding and cleavage, BSA binding, molecular docking, and cytotoxicity. J Biomol Struct Dyn. 2019;37(15):3887–904. https://doi.org/10.1080/07391102.2018.1534700.

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh P, Devi GP, Priya R, Amrita A, Sivaramakrishna A, Babu S, et al. Spectroscopic and in silico evaluation of the interaction of DNA with six anthraquinone derivatives. Appl Biochem Biotechnol. 2013;170:1127–37. https://doi.org/10.1007/s12010-013-0259-2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of this article would like to thank the Payame Noor University of Isfahan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasrin Sohrabi or Mahboube Eslami Moghadam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiekhzadeh, A., Sohrabi, N., Eslami Moghadam, M. et al. Effect of Presence of Aliphatic Glycine in the Anti-cancer Platinum Complex Structure on Human Serum Albumin Binding. J Pharm Innov 17, 353–365 (2022). https://doi.org/10.1007/s12247-020-09508-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09508-3

Keywords

Navigation