Skip to main content
Log in

Drug–Drug Coamorphous Systems: Characterization and Physicochemical Properties of Coamorphous Atorvastatin with Carvedilol and Glibenclamide

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

In this study, coamorphous form of atorvastatin calcium (ATC) with two drugs, i.e., carvedilol (CVD) and glibenclamide (GLN) in 1:1 stoichiometry, were prepared from solvent evaporation method and they were characterized and their physicochemical properties determined.

Methods

The coamorphous forms were characterized using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD). The kinetic solubility of coamorphous form of ATC with CVD (ATC–CVD) and GLN (ATC–GLN) were determined along with stability of supersaturated state of coamorphous forms using developed accurate and precise UV-net analyte signal standard addition method (chemometrics-based approach) and HPLC.

Results

The results of DSC and analysis of glass transition temperatures (T g), PXRD, and FT-IR indicated that the crystalline studied drugs were converted to coamorphous forms, with unique thermal behaviors, revealing a molecular interaction between two components. The kinetic solubility data revealed that coamorphous forms have better metastable solubility than those of crystalline state. In addition, these systems showed greater solution stability than those for amorphous form of single components reported in the literature.

Conclusion

Coamorphous ATC–CVD and ATC–GLN were shown to have improved physicochemical and solution stability properties as compared to crystalline components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharm Rev. 2013;65:315–499.

    Article  PubMed  CAS  Google Scholar 

  2. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  PubMed  CAS  Google Scholar 

  3. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Del Rev. 2007;59:617–30.

    Article  CAS  Google Scholar 

  4. Kawakami K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv Drug Del Rev. 2012;64:480–95.

    Article  CAS  Google Scholar 

  5. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, salts, and cocrystals: what's in a name? Cryst Growth Des. 2012;12:2147–52.

    Article  CAS  Google Scholar 

  6. Laitinen R, Löbmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453:65–79.

    Article  PubMed  CAS  Google Scholar 

  7. Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8:1919–28.

    Article  PubMed  Google Scholar 

  8. Shayanfar A, Ghavimi H, Hamishehkar H, Jouyban A. Coamorphous atorvastatin calcium to improve its physicochemical and pharmacokinetic properties. J Pharm Pharm Sci. 2013;16:577–587.

    Google Scholar 

  9. Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm. 2012;81:159–69.

    Article  PubMed  Google Scholar 

  10. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011;11:2662–79.

    Article  CAS  Google Scholar 

  11. Sekhon BS. Drug–drug co-crystals. Daru. 2012;20:45.

    Article  PubMed  CAS  Google Scholar 

  12. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23.

    Article  PubMed  CAS  Google Scholar 

  13. Sonje VM, Kumar L, Meena CL, Kohli G, Puri V, Jain R, et al. Chapter 1 - atorvastatin calcium. In: Harry GB, editor. Profiles of drug substances, excipients and related methodology. Waltham: Academic; 2010. p. 1–70.

    Chapter  Google Scholar 

  14. Kim MS, Jin SJ, Kim JS, Park HJ, Song HS, Neubert RHH, et al. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur J Pharm Biopharm. 2008;69:454–65.

    Article  PubMed  CAS  Google Scholar 

  15. Kim JS, Kim MS, Park HJ, Jin SJ, Lee S, Hwang SJ. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int J Pharm. 2008;359:211–9.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang H-X, Wang J-X, Zhang Z-B, Le Y, Shen Z-G, Chen J-F. Micronization of atorvastatin calcium by antisolvent precipitation process. Int J Pharm. 2009;374:106–13.

    Article  PubMed  CAS  Google Scholar 

  17. Martindale. The extra pharmacopoeia. 36th ed. London: The Pharmaceutical Press; 2005. p. 1241–2.

    Google Scholar 

  18. Bhosale P, Pore Y, Sayyad F. Preparation of amorphous carvedilol polymeric microparticles for improvement of physicochemical properties. J Pharm Investig. 2012;42:335–44.

    Article  CAS  Google Scholar 

  19. Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low T g drug. Powder Technol. 2006;167:20–5.

    Article  CAS  Google Scholar 

  20. Dastmalchi S, Garjani A, Maleki N, Sheikhee G, Baghchevan V, Jafari-Azad P, et al. Enhancing dissolution, serum concentrations and hypoglycemic effect of glibenclamide using solvent deposition technique. J Pharm Pharm Sci. 2005;8:175–81.

    PubMed  CAS  Google Scholar 

  21. Ting HJ, Murray WJ, Khasawneh FT. Repurposing an old drug for a new use: glybenclamide exerts antiplatelet activity by interacting with the thromboxane A2 receptor. Acta Pharmacol Sin. 2010;31:150–9.

    Article  PubMed  CAS  Google Scholar 

  22. Elkordy AA, Jatto A, Essa E. In situ controlled crystallization as a tool to improve the dissolution of Glibenclamide. Int J Pharm. 2012;428:118–20.

    Article  PubMed  CAS  Google Scholar 

  23. Panagopoulou-Kaplani A, Malamataris S. Preparation and characterisation of a new insoluble polymorphic form of glibenclamide. Int J Pharm. 2000;195:239–46.

    Article  PubMed  CAS  Google Scholar 

  24. Smith R, McCready T, Yusuf S. Combination therapy to prevent cardiovascular disease: slow progress. JAMA. 2013;309:1595–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hong YJ, Jeong MH, Hwang SH, Yun NS, Lee SR, Hong SN, et al. Effect of combination therapy with simvastatin and carvedilol in patients with left ventricular dysfunction complicated with acute myocardial infarction who underwent percutaneous coronary intervention. Circ J. 2006;70:1269–74.

    Article  PubMed  CAS  Google Scholar 

  26. Sacks FM, Tonkin AM, Craven T, Pfeffer MA, Shepherd J, Keech A, et al. Coronary heart disease in patients with low LDL-cholesterol benefit of pravastatin in diabetics and enhanced role for HDL-cholesterol and triglycerides as risk factors. Circulation. 2002;105:1424–8.

    Article  PubMed  CAS  Google Scholar 

  27. Maggio RM, Rivero MA, Kaufman TS. Simultaneous acquisition of the dissolution curves of two active ingredients in a binary pharmaceutical association, employing an on-line circulation system and chemometrics-assistance. J Pharm Biomed Anal. 2013;72:51–8.

    Article  PubMed  CAS  Google Scholar 

  28. Asadpour-Zeynali K, Bastami M. Net analyte signal standard addition method (NASSAM) as a novel spectrofluorimetric and spectrophotometric technique for simultaneous determination, application to assay of melatonin and pyridoxine. Spectrochim Acta A. 2010;75:589–97.

    Article  Google Scholar 

  29. Shayanfar A, Asasdpour-Zeynali K, Jouyban A. Solubility and dissolution rate of a carbamazepine–cinnamic acid cocrystal. J Mol Liq. 2013;187:171–6.

    Article  CAS  Google Scholar 

  30. United States Pharmacopeia. US Pharmaceutical Convention, Rockville, MD; 2002.

  31. Gao Y, Liao J, Qi X, Zhang J. Coamorphous repaglinide–saccharin with enhanced dissolution. Int J Pharm. 2013;450:290–5.

    Article  PubMed  CAS  Google Scholar 

  32. Beattie K, Phadke G, Novakovic J. Chapter 4 - Carvedilol. In: Harry GB, editor. Profiles of drug substances, excipients and related methodology. Waltham: Academic; 2013. p. 113–57.

    Chapter  Google Scholar 

  33. Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res. 2010;27:2704–14.

    Article  PubMed  CAS  Google Scholar 

  34. Al-Obaidi H, Lawrence MJ, Al-Saden N, Ke P. Investigation of griseofulvin and hydroxypropylmethyl cellulose acetate succinate miscibility in ball milled solid dispersions. Int J Pharm. 2013;443:95–102.

    Article  PubMed  CAS  Google Scholar 

  35. Shete G, Puri V, Kumar L, Bansal AK. Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech. 2010;11:598–609.

    Article  PubMed  CAS  Google Scholar 

  36. Rehder S, Sakmann A, Rades T, Leopold CS. Thermal degradation of amorphous glibenclamide. Eur J Pharm Biopharm. 2012;80:203–8.

    Article  PubMed  CAS  Google Scholar 

  37. Wojnarowska Z, Grzybowska K, Adrjanowicz K, Kaminski K, Paluch M, Hawelek L, et al. Study of the amorphous glibenclamide drug: analysis of the molecular dynamics of quenched and cryomilled material. Mol Pharm. 2010;7:1692–707.

    Article  PubMed  CAS  Google Scholar 

  38. Patterson JE, James MB, Forster AH, Lancaster RW, Butler JM, Rades T. The influence of thermal and mechanical preparative techniques on the amorphous state of four poorly soluble compounds. J Pharm Sci. 2005;94:1998–2012.

    Article  PubMed  CAS  Google Scholar 

  39. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98:2549–72.

    Article  PubMed  CAS  Google Scholar 

  40. Bevernage J, Brouwers J, Brewster ME, Augustijns P. Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm. 2013;453:25–35.

    Article  PubMed  CAS  Google Scholar 

  41. Maruyama S, Ooshima H. Crystallization behavior of taltirelin polymorphs in a mixture of water and methanol. J Cryst Growth. 2000;212:239–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article is a part of the results of the PhD thesis No. 64 submitted to the Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. The authors would like to thank PXRD lab, Institute of Mineralogy, North Western Regional Office, Tabriz, Iran for providing PXRD patterns, Dr. Karim Asadpour-Zeynali from Faculty of Chemistry, University of Tabriz and Dr. Yousef Javadzadeh from Faculty of Pharmacy, Tabriz University of Medical Sciences for their helps in this study and Gifting the GLN powder by Kimidaru Pharmaceutical Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolghasem Jouyban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shayanfar, A., Jouyban, A. Drug–Drug Coamorphous Systems: Characterization and Physicochemical Properties of Coamorphous Atorvastatin with Carvedilol and Glibenclamide. J Pharm Innov 8, 218–228 (2013). https://doi.org/10.1007/s12247-013-9162-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-013-9162-1

Keywords

Navigation