Skip to main content
Log in

A PAT Approach to Enhance Process Understanding of Fluid Bed Granulation Using In-line Particle Size Characterization and Multivariate Analysis

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The purpose of this study was to achieve improved process understanding of fluid bed granulation using in-line particle size analyzer in conjunction with multivariate methods. The combined use of process analyzers and multivariate tools provides a useful means to drug development within the framework of quality by design utilizing process analytical technology. The evaluation of in-line monitoring manufacturability quality attributes, particle size, and particle size distribution, was conducted using the Parsum probe which is based on spatial filtering technique. Several granulation batches were manufactured and monitored using a commercial-scale fluid bed granulator. Reference measurements by offline Malvern MasterSizer showed good agreement with those by Parsum at end-of-spray phase. Multivariate/batch statistical process control methods were used to evaluate batch process performance, batch-to-batch variation and develop potential control strategy. The results indicated that the Parsum analyzer is a viable tool for in-line particle size characterization and improved process understanding in combination with multivariate tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Närvänen T, Lipsanen T, Antikainen O, Räikkönen H, Heinämäki J, Yliruusi J. Gaining fluid bed process understanding by in-line particle size analysis. J Pharm Sci. 2009;98:1110–17.

    Article  PubMed  Google Scholar 

  2. Schmidt-Lehr S, Moritz H, Jürgens KC. Online control of particle size during fluidised bed granulation. Pharm Ind. 2007;69:478–84.

    CAS  Google Scholar 

  3. Rantanen J, Wikström H, Turner R, Taylor LS. Use of in-line near-infrared spectroscopy in combination with chemometrics for improved understanding of pharmaceutical processes. Anal Chem. 2005;77:556–63.

    Article  CAS  PubMed  Google Scholar 

  4. Frake P, Greenhalgh D, Grierson SM, Hempenstall JM, Rudd DR. Process control and end-point determination of a fluid bed granulation by application of near infra-red spectroscopy. Int J Pharm. 1997;151:75–80.

    Article  CAS  Google Scholar 

  5. Goebel SG, Steffens KJ. Online-measurement of moisture and particle size in the fluidized-bed processing with the near-infrared-spectroscopy. Pharm Ind. 1998;60:889–95.

    CAS  Google Scholar 

  6. Nieuwmeyer FJS, Damen M, Gerich A, Rusmini F, Maarchalk KV, Vromans H. Granule characterization during fluid bed drying by development of a near-infrared method to determine water content and median granule size. Pharm Res. 2007;24:1854–61.

    Article  CAS  PubMed  Google Scholar 

  7. Rantanen J, Räsänen E, Tenhunen J, Känsäkoski M, Mannermaa JP, Yliruusi J. In-line moisture measurement during granulation with a four-wavelength near infrared sensor: an evaluation of particle size and binder effects. Eur J Pharm Biopharm. 2000;50:271–6.

    Article  CAS  PubMed  Google Scholar 

  8. Findlay WP, Peck GR, Morris KR. Determination of fluidized bed granulation end point using near-infrared spectroscopy and phenomenological analysis. J Pharm Sci. 2005;94:604–12.

    Article  CAS  PubMed  Google Scholar 

  9. Watano S, Miyanami K. Image processing for on-line monitoring of granule size distribution and shape in fluidized bed granulation. Powder Technol. 1995;83:55–60.

    Article  CAS  Google Scholar 

  10. Watano S. Direct control of wet granulation processes by image processing system. Powder Technol. 2001;117:163–72.

    Article  CAS  Google Scholar 

  11. Halstensen M, de Bakker P, Esbensen KH. Acoustic chemometric monitoring of fluidized bed granulation: part I. Powder Handl Proc. 2005;17:206–11.

    CAS  Google Scholar 

  12. Halstensen M, de Bakker P, Esbensen KH. Acoustic chemometric monitoring of an industrial granulation production process—aPAT feasibility study. Chemometr Intell Lab Syst. 2006;84:88–97.

    Article  CAS  Google Scholar 

  13. Huang J, Ose S, de Silva S, Esbensen KH. Non-invasive monitoring of powder breakage during pneumatic transportation using acoustic chemometrics. Powder Technol. 2003;129:130–8.

    Article  CAS  Google Scholar 

  14. Ruf A, Worlitschek J, Mazzotti M. Modeling and experimental analysis of PSD measurements through FBRM. Part Part Syst Char. 2000;17:167–79.

    Article  CAS  Google Scholar 

  15. Petrak D. Simultaneous measurement of particle size and particle velocity by the spatial filtering technique. Part Part Syst Char. 2002;19:391–400.

    Article  Google Scholar 

  16. Kougoulos E, Jones AG, Jennings KH, Wood-Kaczmar MW. Use of focused beam reflectance measurement (FBRM) and process video imaging (PVI) in a modified mixed suspension mixed product removal (MSMPR) cooling crystallizer. J Cryst Growth. 2005;273:529–34.

    Article  CAS  Google Scholar 

  17. Barrett P, Smith B, Worlitschek J, Bracken V, O’Sullivan B, O’Grady D. A review of the use of process analytical technology for the understanding and optimization of production batch crystallization processes. Org Process Res Dev. 2005;9:348–55.

    Article  CAS  Google Scholar 

  18. Hu X, Cunningham JC, Winstead D. Study growth kinetics in fluidised bed granulation with at-line FBRM. Int J Pharm. 2008;347:54–61.

    Article  CAS  PubMed  Google Scholar 

  19. Kourti T. Process analytical technology and multivariate statistical process control. Wellness index of process and product-Part 1. J Proc Anal Techn. 2004;1:13–9.

    Google Scholar 

  20. Kourti T. Process analytical technology and multivariate statistical process control. Index of wellness of product and process-Part 2. J Proc Anal Techn. 2005;2:24–8.

    CAS  Google Scholar 

  21. Kourti T. Process analytical technology and multivariate statistical process control. Index of wellness of product and process-Part 2. J Proc Anal Techn. 2006;3:18–24.

    CAS  Google Scholar 

  22. Kourti T. Multivariate dynamic data modelling for analysis and statistical process control of batch processes, start-ups and grade transitions. J Chemometr. 2003;17:93–109.

    Article  CAS  Google Scholar 

  23. FDA. PAT—A framework for innovative pharmaceutical development, manufacturing and quality assurance; 2004

  24. ICH harmonised tripartite guideline, pharmaceutical development q8, 2005

  25. Mattila M, Saloheimo K, Koskinen K. Improving the robustness of particle size analysis by multivariate statistical process control. Part Part Syst Char. 2007;24:173–83.

    Article  Google Scholar 

  26. Wold S, Kettaneh N, Friden H, Holmberg A. Modelling and diagnostics of batch processes and analogous kinetic experiments. Chemometr Intell Lab Syst. 1998;44:331–40.

    Article  CAS  Google Scholar 

  27. Wold S, Geladi P, Esbensen K, Ohman J. Multi-way principal components and PLS analysis. J Chemometr. 1987;1:41–56.

    Article  CAS  Google Scholar 

  28. Kresta JV, MacGregor JF, Marlin TE. Multivariate statistical monitoring of process operating performance. Can J Chem Eng. 1991;69:35–47.

    Article  CAS  Google Scholar 

  29. Nomikos P, MacGregor JF. Multivariate SPC charts for monitoring batch processes. Technometrics. 1995;37:41–59.

    Article  Google Scholar 

  30. Nomikos P, MacGregor JF. Multi-way partial least squares in monitoring batch processes. Chemometr Intell Lab. 1995;30:97–108.

    Article  CAS  Google Scholar 

  31. Simca-P+. Multivariate data analysis software, Umetrics AB, NJ. 2008 v 12.0

  32. Hoffmann AC, Romp EJ. Segregation in a fluidized powder of a continuous size distribution. Powder Technol. 1991;66:119–26.

    Article  CAS  Google Scholar 

  33. Huilin L, Yurong H, Gidaspow D, Lidan Y, Yukun Q. Size segregation of binary mixture of solids in bubbling fluidized beds. Powder Technol. 2003;134:86–97.

    Article  Google Scholar 

  34. Wormsbecker M, Adams A, Pugsley T, Winters C. Segregation by size difference in a conical fluidized bed of pharmaceutical granulate. Powder Technol. 2005;153:72–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge Norbert Straub at Excella, Thirunellai Venkateshwaran, Chun Cai, Victor Wong, and Saly Romero-Torres at Wyeth for constructive discussions and strong support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Goolcharran, C., Utz, J. et al. A PAT Approach to Enhance Process Understanding of Fluid Bed Granulation Using In-line Particle Size Characterization and Multivariate Analysis. J Pharm Innov 5, 58–68 (2010). https://doi.org/10.1007/s12247-010-9079-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-010-9079-x

Keywords

Navigation