Skip to main content
Log in

Beam reconfiguration of linear array of parallel dipole antennas through switching with real excitation voltage distribution

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

In this paper, authors propose a method based on the modified particle swarm optimization (PSO) for beam reconfiguration of linear array of mutually coupled parallel half-wavelength dipole antennas with real excitation voltage amplitude distribution. Two different beam pairs are generated, one pencil/pencil beam pair and another pencil/flat-top beam pair in the horizontal plane. One beam is changed to another through switching while sharing a common amplitude distribution. Two examples are presented, one without ground plane and another in presence of ground plane. Dipoles are connected to its feed network through a switch, so that it can be turned on or off, depending on the switch position. Beam reconfiguration is achieved by suitably turning the array elements on or off using same voltage excitation distribution. Modified PSO is used to compute the excitation voltages as well as the switching configuration for each pattern having a prefixed side lobe level. The current in the driven and parasitic elements is determined via induced EMF method considering the current distribution on each dipole to be sinusoidal. Proposed method efficiently synthesizes dual-beam switching the power pattern from pencil to pencil and pencil to flat-top having same or different side lobe levels using common excitation voltages. It calculates the maximum variation of the active impedance of driven elements and the power losses when the radiation patterns switch from one beam to another. The paper calculates the array directivity as the distances between antenna array and the ground pane varies. Three other state-of-the-art metaheuristics like differential evolution, gravitational search algorithm, artificial bee colony algorithm are also employed for achieving a comparative evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bucci OM, Mazzarella G, Panariello G (1991) Reconfigurable arrays by phase-only control. IEEE Trans Antennas Propagat 39(7):919–925

    Article  Google Scholar 

  2. Durr M, Trastoy A, Ares F (2000) Multiple pattern linear antenna arrays with single prefixed amplitude distributions modified Woodward-Lawson synthesis. Electron Lett 36(16):1345–1346

    Article  Google Scholar 

  3. Diaz X, Rodriguez JA, Ares F, Moreno E (2000) Design of phase-differentiated multiple-pattern antenna arrays. Microw Opt Technol Lett 16(1):52–53

    Article  Google Scholar 

  4. Bregains JC, Trastoy A, Ares F, Moreno E (2002) Synthesis of multiple-pattern planar antenna arrays with single prefixed or jointly optimized amplitude distributions. Microw Opt Technol Lett 32(1):74–78

    Article  Google Scholar 

  5. Trastoy A, Rahmat-Samii Y, Ares F, Moreno E (2004) “Two pattern linear array antenna: synthesis and analysis of tolerance”. IEE Proc Microw Antennas Propagat 151(2):127–130

    Article  Google Scholar 

  6. Mahanti GK, Chakraborty A, Das S (2007) Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio. J Electromagn Waves Appl 21(1):97–106

    Article  Google Scholar 

  7. Akdagli A, Guney K, Babayigit B (2007) Clonal selection algorithm for design of reconfigurable antenna array with discrete phase shifters. J Electromagn Waves Appl 21(2):215–227

    Article  Google Scholar 

  8. Vaitheeswaran SM (2008) Dual beam synthesis using element position perturbations and the G3-GA algorithm. Progress In Electromagn Res PIER 87:43–61

    Article  Google Scholar 

  9. Rodríguez JA, Trastoy A, Brégains Julio C, Ares F, Franceschetti G (2006) “Beam reconfiguration of linear arrays by using parasitic elements,”. Electron Lett 52(3):131–133

    Article  Google Scholar 

  10. Yuan HW, Gong SX, Zhang PF, Wang X (2008) Wide scanning phased array antenna using printed dipole antennas with parasitic element. Progress In Electromagn Res Lett 2:187–193

    Article  Google Scholar 

  11. Álvarez-Folgueiras M, Rodríguez-González JA, Ares-Pena F (2009) “Low-Sidelobe Patterns From Small, Low-Loss Uniformly Fed Linear Arrays Illuminating Parasitic Dipoles,”IEEE Trans on Antennas and Propagat Vol 57, No. 5

  12. Quevedo-Teruel Ó, Rajo-Iglesias E (2006) Ant colony optimization in thinned array synthesis with minimum sidelobe level. IEEE Antennas Wireless Propagat Lett 5:349–352

    Article  Google Scholar 

  13. Mahanti GK, Pathak N, Mahanti P (2007) Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm. Progress In Electromagn Res PIER 75:319–328

    Article  Google Scholar 

  14. Haupt RL (1994) Thinned arrays using genetic algorithms. IEEE Trans Antennas Propag 42(7):993–999

    Article  Google Scholar 

  15. Kennedy J, Eberhart RC (1995) “Particle swarm optimization,” in Proc IEEE Int Conf Neural Networks pp 1942–1948

  16. Li WT, Shi XW, Hei YQ (2008) An improved particle swarm optimization algorithm for pattern synthesis of phased arrays. Progress In Electromagn Res PIER 82:319–332

    Article  Google Scholar 

  17. Jin N, Rahmat-Samii Y (2007) Advances in particle swarm optimization for antenna designs: real-number, binary, single- objective and multiobjective implementations. IEEE Trans Antennas Propag 55(3):556–567

    Article  Google Scholar 

  18. Chen TB, Dong YL, Jiao YC, Zhang FS (2006) Synthesis of circular antenna array using crossed particle swarm optimization algorithm. J Electromagn Waves Appl 20(13):1785–1795

    Article  Google Scholar 

  19. Razavi A, Forooraghi K (2008) Thinned arrays using pattern search algorithms. Progress In Electromagn Res PIER 78:61–71

    Article  Google Scholar 

  20. Bucci OM, Isernia T, Morabito AF (2010) A deterministic approach to the synthesis of pencil beams through planar thinned arrays. Progress In Electromagn Res PIER 101:217–230

    Article  Google Scholar 

  21. Ares F, Franceschetti G, Rodriguez JA (2008) A simple alternative for beam reconfiguration of array antennas. Progress In Electromagn Res PIER 88:227–240

    Article  Google Scholar 

  22. Wang LL, Fang DG, Sheng WX (2003) Combination of genetic algorithm (GA) and Fast Fourier transform (FFT) for synthesis of arrays. Microw Opt Technol Lett 37(1):56–59

    Article  Google Scholar 

  23. Pathak N, Basu B, Mahanti GK (2011) Combination of inverse Fast Fourier transform and modified particle swarm optimization for synthesis of thinned mutually coupled linear array of parallel half-wave length dipoles antennas. Progress In Electromagn Res M 16:105–115

    Google Scholar 

  24. Elliott RS (2003) Antenna theory and design. John Wiley and Sons, Inc., Hoboken, Revised edition

    Book  Google Scholar 

  25. Hansen RC (1972) Formulation of echelon dipole mutual impedance for computer. IEEE Trans Antennas Propagat 6:780–781

    Article  Google Scholar 

  26. Das S, Abraham A, Chakraborty UK, Konar A (2009) Differential evolution using a neighborhood-based mutation operator. IEEE Trans Evolutionary Comput 13:526–553

    Article  Google Scholar 

  27. Chatterjee A, Mahanti GK, Pathak NN (2010) Comparative performance of gravitational search algorithm and modified particle swarm optimization algorithm for synthesis of thinned scanned concentric ring array antenna. Progress In Electromagn Res B 25:331–348

    Article  Google Scholar 

  28. Basu B, Mahanti GK (2011) Fire fly and artificial bees colony algorithm for synthesis of scanned and broadside linear array antenna. Progress In Electromagn Res B 32:169–190

    Article  Google Scholar 

  29. Mahanti GK, Das S, Chakraborty A (2006) “Design of Reconfigurable Array Antennas with Minimum Variation of Active Impedances”, IEEE Antennas Wireless Propagat Lett vol 5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Mahanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, B., Mahanti, G.K. Beam reconfiguration of linear array of parallel dipole antennas through switching with real excitation voltage distribution. Ann. Telecommun. 67, 285–293 (2012). https://doi.org/10.1007/s12243-011-0273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-011-0273-8

Keywords

Navigation