Skip to main content
Log in

Ergonomic and biomechnical analysis of automotive general assembly using XML and digital human models

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Automotive general assembly requires many manual assembly operations to be carried out by human workers. Ergonomic analysis is an important part of the design and evaluation of products, jobs, tools, machines and environments for safe, comfortable and effective human functioning. Most recent researches have involved the evaluation of working conditions to prevent work-related musculoskeletal disorders. The majority of previous research on automotive companies has mainly considered the results of ergonomic analyses such as RULA (Rapid Upper Limb Assessment), REBA (Rapid Entire Body Assessment) and OWAS (Ovako Working Posture Analysis System). Analysis of static posture including reachability, clearances for arm, hand and tool has also been used to evaluate working conditions. However, in addition to static posture analysis, a biomechanical analysis in dynamic conditions should also be conducted. There are no integrated frameworks or standard schema for ergonomic analysis using digital human models in digital environments. The purpose of this paper is to propose a new framework for the evaluation of working conditions by ergonomic and biomechanical analysis using digital models based on XML standard schema, including: products, processes, manufacturing resources and human workers. This paper presents the analysis results using the proposed framework for automotive general assembly operations. We propose a new framework for the evaluation of the assembly operations and their environments. Then we apply a digital human model to the dynamic simulation of general automotive assembly operations based on standard schemas in XML and PPRH (Product, Process, Resource and Human). Using PPRH information based on a standard XML schema to analyze the ergonomic and biomechanical results, the engineer can visualize, analyze and improve assembly operations and working environments in automotive general assembly shops using digital models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badler, N. (1993). Computer Graphics Animation and Control, Simulating Humans. Oxford University Press. New York.

    Google Scholar 

  • Chaffin, D. (1969). A computerized biomechanical model: Development and use in studying gross body actions. J. Biomechanics, 2, 429–441.

    Article  Google Scholar 

  • Chaffin, D. B. (2007). Human motion simulation for vehicle and workplace design. Human Factors and Ergonomics in Manufacturing 17,5, 475–484.

    Article  Google Scholar 

  • Chang, S.-W. and Wang, M.-J. J. (2007). Digital human modeling and workplace evaluation: Using an automobile assembly task as an example. Human Factors and Ergonomics in Manufacturing 17,5, 445–455.

    Article  MathSciNet  Google Scholar 

  • Denavit, J. and Hartenberg, H. (1955). A kinematic notation for lower-pair mechanisms based on matrices. J. Applied Mechanics, 21, 215–221.

    MathSciNet  Google Scholar 

  • Engineering Animation (2004). Jack Version 2.x Training Course Note. MI. USA.

  • Hendrick, H. W. (2000). The technology of ergonomics. Theoretical Issues in Ergonomics Science 1,1, 22–33.

    Article  Google Scholar 

  • Kazmierczak, K., Neumann, W. P. and Winkel, J. (2007). A case study of serial-flow car disassembly: Ergonomics, productivity and potential system performance. Human Factors and Ergonomics in Manufacturing 17,4, 331–351.

    Article  Google Scholar 

  • Kim, G. Y., Noh, S. D., Rim, Y. H., and Mun, J. H. (2008). XML-based concurrent and integrated ergonomic analysis in PLM. Int. J. Advanced Manufacturing Technology, 39, 1045–1060.

    Article  Google Scholar 

  • Kingma, I., DeLooze, M. P., Toussaint, H. M., Klijnsma, H. G. and Bruijnen, T. B. M. (1996). Validation of a full body 3-D dynamic linked segment model. Human Movement Science, 15, 833–860.

    Article  Google Scholar 

  • Lämkull, D., Hanson, L. and Örtengren, R. (2007). The influence of virtual human model appearance on visual ergonomics posture evaluation. Applied Ergonomics, 38, 713–722.

    Article  Google Scholar 

  • Maynard, H. B., Stegemerten, G. J. and Schwab, J. L. (1948). Method-Time Measurement. McGraw-Hill. New York.

    Google Scholar 

  • Noh, S. D., Park, Y. J., Kong, S. H., Han, Y. G., Kim, G., and Lee, K. I. (2005). Concurrent and collaborative process planning for automotive general assembly. Int. J. Advanced Manufacturing Technology, 26, 572–584.

    Article  Google Scholar 

  • Noh, S. D. and Kim, G. (2006). Collaborative process and flow analysis for automotive assembly shops. Int. J. Automotive Technology 7,2, 217–226.

    Google Scholar 

  • Noh, S. D., Park, Y. J., Kong, S. H., Han, Y. G., Kim, G. and Lee, K. I. (2005). Concurrence and collaborative process planning for automotive general assembly. Int. J. Advanced Manufacturing Technology, 26, 572–584.

    Article  Google Scholar 

  • Santos, J., Sarriegi, J. M., Serrano, N. and Torres, J. M. (2007). Using ergonomic software in non-repetitive manufacturing processes: A case study. Int. J. Industrial Ergonomics, 37, 267–275.

    Article  Google Scholar 

  • Seidle, A. (1997). Ramsis-A new cad tool for ergonomic analysis of vehicles developed for the german automotive industry. SAE Paper No. 970088.

  • Shan, G. and Bohn, C. (2003). Anthropometrical data and coefficients of regression related to gender and race. Applied Ergonomics 34,4, 327–337.

    Article  Google Scholar 

  • Tolani, D., Goswami, A. and Badler, N. I. (2000). Real-time inverse kinematics techniques for anthropomorphic limbs. Graphical Models, 62, 353–388.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Noh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rim, Y.H., Moon, J.H., Kim, G.Y. et al. Ergonomic and biomechnical analysis of automotive general assembly using XML and digital human models. Int.J Automot. Technol. 9, 719–728 (2008). https://doi.org/10.1007/s12239-008-0085-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-008-0085-7

Key Words

Navigation