Skip to main content

Advertisement

Log in

Understanding Marsh Elevation and Accretion Processes and Vulnerability to Rising Sea Levels Across Climatic and Geomorphic Gradients in California, USA

  • Special Issue: Wetland Elevation Dynamics
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Tidal marshes build elevations by below- and aboveground organic and mineral soil processes. Marsh elevation and accretion data can be used to determine if marshes are keeping pace with sea-level rise. Using a network of 54 deep rod surface elevation tables with paired feldspar marker horizon plots, we tracked elevation and accretion trends across 16 marshes in California, USA. All sites had overall positive gains across years that included severe drought conditions and extreme rain events. Marsh elevation relative to tidal datum (z*) was the key predictor for elevation and accretion rates, with higher change rates at lower z* sites. Marsh sites are clustered into three regional groups (Northern California, San Francisco Bay area, and Southern California), primarily defined by maximum temperature and annual rainfall differences. Elevation, accretion, and shallow subsidence rates were not significantly different between clusters, but their explanatory variables did vary. High-temperature days were a key predictor for elevation, accretion, and shallow subsidence rates in the state-wide analysis and San Francisco Bay regional analysis. The largest elevation gains were observed in the San Francisco Bay-Delta and some of the smallest in Humboldt Bay, with Morro Bay having the lowest accretion rate overall. Central and Southern California marshes were keeping pace or out-pacing sea-level rise, while none of the Humboldt Bay marshes were keeping pace. Marsh surface elevation data can inform management intervention and be a leading indicator for sea-level rise vulnerability. Long-term monitoring across geomorphic settings can help inform management and anticipate marsh change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data can be found at https://doi.org/10.5066/P9MN2I1W.

References

  • Alizad, K., S.C. Hagen, J.T. Morris, S.C. Medeiros, M.V. Bilskie, and J.F. Weishampel. 2016. Coastal wetland response to sea-level rise in a fluvial estuarine system. Earth’s Future 4: 483–497. https://doi.org/10.1002/2016EF000385.

    Article  Google Scholar 

  • Barnhart, R., M. Boyd, and J. Pequengnat. 1992. The ecology of Humboldt Bay, California: an estuarine profile. U.S. Fish and Wildlife Service Biological Report 1. California Cooperative Fish and Wildlife Research Unit.

  • Baustian, J.J., I.A. Mendelssohn, and M.W. Hester. 2012. Vegetation’s importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18: 3377–3382. https://doi.org/10.1111/j.1365-2486.2012.02792.x.

    Article  Google Scholar 

  • Behrens, D.K., F.A. Bombardelli, J.L. Largier, and E. Twohy. 2013. Episodic closure of the tidal inlet at the mouth of the Russian River — a small bar-built estuary in California. Geomorphology 189: 66–80. https://doi.org/10.1016/j.geomorph.2013.01.017.

    Article  Google Scholar 

  • Blum, L.K., R.R. Christian, D.R. Cahoon, and P.L. Wiberg. 2021. Processes influencing marsh elevation change in low- and high-elevation zones of a temperate salt marsh. Estuaries and Coasts 44: 818–833. https://doi.org/10.1007/s12237-020-00796-z.

    Article  CAS  Google Scholar 

  • Bobker, G., A. Weber-Stover, J. Rosenfield, G. Reis, and P. Vorster. 2016. San Francisco Bay: the freshwater – starved estuary. The Bay Institute. https://doi.org/10.13140/RG.2.2.30680.70408.

  • Bogard, M. J., B. A. Bergamaschi, D. E. Butman, F. Anderson, S. H. Knox, and L. Windham‐Myers. 2020. Hydrologic export is a major component of coastal wetland carbon budgets. Global Biogeochemical Cycles 34. https://doi.org/10.1029/2019GB006430.

  • Brand, M.W., K. Buffington, J.B. Rogers, K. Thorne, E.D. Stein, and B.F. Sanders. 2022. Multi‐decadal simulation of marsh topography under sea level rise and episodic sediment loads. Journal of Geophysical Research: Earth Surface 127. https://doi.org/10.1029/2021JF006526.

  • Brophy, L.S., C.M. Greene, V.C. Hare, B. Holycross, A. Lanier, W.N. Heady, K. O’Connor, H. Imaki, T. Haddad, and R. Dana. 2019. Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands. PLoS ONE 14: e0218558. https://doi.org/10.1371/journal.pone.0218558.

    Article  CAS  Google Scholar 

  • Brown, L. 2019. California salt marsh accretion, ecosystem services, and disturbance responses in the face of climate change. Doctoral dissertation, University of California, Los Angeles.

  • Buffington, K.J., C.N. Janousek, K.M. Thorne, and B.D. Dugger. 2020. Spatiotemporal patterns of mineral and organic matter deposition across two San Francisco Bay-Delta tidal marshes. Wetlands. https://doi.org/10.1007/s13157-019-01259-3.

    Article  Google Scholar 

  • Buffington, K.J., C.N. Janousek, B.D. Dugger, J.C. Callaway, L.M. Schile-Beers, E. Borgnis Sloane, and K.M. Thorne. 2021. Incorporation of uncertainty to improve projections of tidal wetland elevation and carbon accumulation with sea-level rise. PLoS ONE 16: e0256707. https://doi.org/10.1371/journal.pone.0256707.

    Article  CAS  Google Scholar 

  • Cahoon, D.R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts 29: 889–898. https://doi.org/10.1007/BF02798648.

    Article  Google Scholar 

  • Cahoon, D.R., and G. Guntenspergen. 2010. Climate change, sea-level rise, and coastal wetlands. National Wetlands Newsletter 32: 8–12.

    Google Scholar 

  • Cahoon, D.R., D.J. Reed, and J.W. Day. 1995. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Marine Geology 128: 1–9. https://doi.org/10.1016/0025-3227(95)00087-F.

    Article  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, and A.N. Powell. 1996. Marsh vertical accretion in a Southern California estuary, U.S.A. Estuarine, Coastal and Shelf Science 43: 19–32. https://doi.org/10.1006/ecss.1996.0055.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, B.C. Perez, B. Segura, R.D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. High-precision measurements of wetland sediment elevation: II. The Rod Surface Elevation Table. Journal of Sedimentary Research 72: 734–739. https://doi.org/10.1306/020702720734.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., J.C. Lynch, C.T. Roman, J.P. Schmit, and D.E. Skidds. 2019. Evaluating the relationship among wetland vertical development, elevation capital, sea-level rise, and tidal marsh sustainability. Estuaries and Coasts 42: 1–15. https://doi.org/10.1007/s12237-018-0448-x.

    Article  CAS  Google Scholar 

  • Cahoon, D.R., and R.E. Turner. 1989. Accretion and canal impacts in a rapidly subsiding wetland II. feldspar marker horizon technique. Estuaries 12: 260. https://doi.org/10.2307/1351905.

  • Callaway, J.C., E. Borgnis Sloane, T.R. Eugene, and C. Milan. 2012. Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts 35: 1163–1181.

    Article  CAS  Google Scholar 

  • Callaway, J.C., D.R. Cahoon, and J.C. Lynch. 2015. The surface elevation table-marker horizon method for measuring wetland accretion and elevation dynamics. In SSSA Book Series, ed. R.D. DeLaune, K.R. Reddy, C.J. Richardson, and J.P. Megonigal. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America. 901–917. https://doi.org/10.2136/sssabookser10.c46.

  • Charrad, M., N. Ghazzali, V. Boiteau, and A. Niknafs. 2014. NbClust: An R package for determining the relevant number of clusters in a data set. Journal of Statistical Software 61: 1–36.

    Article  Google Scholar 

  • Cloern, J.E., P.C. Abreu, J. Carstensen, L. Chauvaud, R. Elmgren, J. Grall, H. Greening, et al. 2016. Human activities and climate variability drive fast-paced change across the world’s estuarine-coastal ecosystems. Global Change Biology 22: 513–529. https://doi.org/10.1111/gcb.13059.

    Article  Google Scholar 

  • Cloern, J.E., and A.D. Jassby. 2012. Drivers of change in estuarine-coastal ecosystems: discoveries from four decades of study in San Francisco Bay. Reviews of Geophysics 50: RG4001. https://doi.org/10.1029/2012RG000397.

  • Curtis, J.A., L.E. Flint, M.A. Stern, J. Lewis, and R.D. Klein. 2021. Amplified impact of climate change on fine-sediment delivery to a subsiding coast, Humboldt Bay, California. Estuaries and Coasts 44: 2173–2193. https://doi.org/10.1007/s12237-021-00938-x.

    Article  Google Scholar 

  • Dahl, T.E. 1990. Wetland losses in the United States 1780’s to 1980’s. Department of the Interior, Fish and Wildlife Service. Washington, D.C.

  • Darby, F.A., and R.E. Turner. 2008. Below- and aboveground biomass of Spartina alterniflora: Response to nutrient addition in a Louisiana salt marsh. Estuaries and Coasts 31: 326–334. https://doi.org/10.1007/s12237-008-9037-8.

    Article  CAS  Google Scholar 

  • Deverel, S., T. Ingrum, Hydrofocus, Inc., C. Lucero, and J. Drexler. 2014. Impounded marshes on subsided islands: simulated vertical accretion, processes, and effects, Sacramento-San Joaquin Delta, CA USA. San Francisco Estuary and Watershed Science 12. https://doi.org/10.15447/sfews.2014v12iss2art5.

  • Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.R. Guntenspergen, S. Temmerman, A. D’Alpaos, J. van de Koppel, et al. 2012. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Reviews of Geophysics 50: RG1002. https://doi.org/10.1029/2011RG000359.

  • Feher, L.C., M.J. Osland, G.H. Anderson, W.C. Vervaeke, K.W. Krauss, K.R.T. Whelan, K.M. Balentine, G. Tiling-Range, T.J. Smith, and D.R. Cahoon. 2019. The long-term effects of hurricanes Wilma and Irma on soil elevation change in Everglades mangrove forests. Ecosystems. https://doi.org/10.1007/s10021-019-00446-x.

    Article  Google Scholar 

  • Fisher, A., P. Belmont, B.P. Murphy, L. MacDonald, K.L. Ferrier, and K. Hu. 2021. Natural and anthropogenic controls on sediment rating curves in Northern California coastal watersheds. Earth Surface Processes and Landforms 46: 1610–1628. https://doi.org/10.1002/esp.5137.

    Article  Google Scholar 

  • Fleri, J.R., S. Lera, A. Gerevini, L. Staver, and W. Nardin. 2019. Empirical observations and numerical modelling of tides, channel morphology, and vegetative effects on accretion in a restored tidal marsh. Earth Surface Processes and Landforms 44: 2223–2235. https://doi.org/10.1002/esp.4646.

    Article  Google Scholar 

  • Frades, I., and R. Matthiesen. 2010. Overview on techniques in cluster analysis. Bioinformatics methods in clinical research: 81–107.

  • Gohin, F. 2011. Annual cycles of chlorophyll, non-algal suspended particulate matter, and turbidity observed from space and in-situ in coastal waters. Ocean Science 7: 705–732. https://doi.org/10.5194/os-7-705-2011.

    Article  CAS  Google Scholar 

  • Goodman, A.C., K.M. Thorne, K.J. Buffington, C.M. Freeman, and C.N. Janousek. 2018. El Niño increases high-tide flooding in tidal wetlands along the U.S. Pacific coast. Journal of Geophysical Research: Biogeosciences 123: 3162–3177. https://doi.org/10.1029/2018JG004677.

    Article  Google Scholar 

  • Haralambidou, K., G. Sylaios, and V.A. Tsihrintzis. 2010. Salt-wedge propagation in a Mediterranean micro-tidal river mouth. Estuarine, Coastal and Shelf Science 90: 174–184. https://doi.org/10.1016/j.ecss.2010.08.010.

    Article  CAS  Google Scholar 

  • Harvey, M.E., S.N. Giddings, E.D. Stein, J.A. Crooks, C. Whitcraft, T. Gallien, J.L. Largier, et al. 2020. Effects of elevated sea levels and waves on Southern California estuaries during the 2015–2016 El Niño. Estuaries and Coasts 43: 256–271. https://doi.org/10.1007/s12237-019-00676-1.

    Article  Google Scholar 

  • IPCC. 2022. The ocean and cryosphere in a changing climate: special report of the intergovernmental panel on climate change. 1st ed. Cambridge University Press. https://doi.org/10.1017/9781009157964.

  • Janousek, C.N., K.M. Thorne, and J.Y. Takekawa. 2019. Vertical zonation and niche breadth of tidal marsh plants along the northeast Pacific Coast. Estuaries and Coasts 42: 85–98. https://doi.org/10.1007/s12237-018-0420-9.

    Article  Google Scholar 

  • Kassambara, A. 2017. Practical guide to cluster analysis in R: unsupervised machine learning. Multivariate Analysis Vol. 1. CreateSpace Independent Publishing Platform.

  • Kayranli, B., M. Scholz, A. Mustafa, and Å. Hedmark. 2010. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands 30: 111–124. https://doi.org/10.1007/s13157-009-0003-4.

    Article  Google Scholar 

  • Kirwan, M.L., and L.K. Blum. 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences Discussion 8: 707–722. https://doi.org/10.5194/bgd-8-707-2011.

    Article  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level: ecogeomorphic limits to wetland survival. Geophysical Research Letters 37. https://doi.org/10.1029/2010GL045489.

  • Knowles, N., C. Cronkite-Ratcliff, D.W. Pierce, and D.R. Cayan. 2018. Responses of unimpaired flows, storage, and managed flows to scenarios of climate change in the San Francisco Bay-Delta watershed. Water Resources Research 54: 7631–7650. https://doi.org/10.1029/2018WR022852.

    Article  Google Scholar 

  • Krauss, K.W., K.L. McKee, C.E. Lovelock, D.R. Cahoon, N. Saintilan, R. Reef, and L. Chen. 2014. How mangrove forests adjust to rising sea level. New Phytologist 202: 19–34. https://doi.org/10.1111/nph.12605.

    Article  Google Scholar 

  • Lane, R.R., J.W. Day, and J.N. Day. 2006. Wetland surface elevation, vertical accretion, and subsidence at three Louisiana estuaries receiving diverted Mississippi River water. Wetlands 26: 1130–1142. https://doi.org/10.1672/0277-5212(2006)262.0.CO;2.

    Article  Google Scholar 

  • Langley, J.A., K.L. McKee, D.R. Cahoon, J.A. Cherry, and J.P. Megonigal. 2009. Elevated CO 2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences 106: 6182–6186. https://doi.org/10.1073/pnas.0807695106.

    Article  Google Scholar 

  • Langston, A.K., O. Durán Vinent, E.R. Herbert, and M.L. Kirwan. 2020. Modeling long-term salt marsh response to sea level rise in the sediment-deficient Plum Island Estuary, MA. Limnology and Oceanography 65: 2142–2157. https://doi.org/10.1002/lno.11444.

    Article  Google Scholar 

  • Langston, A.K., C.R. Alexander, M. Alber, and M.L. Kirwan. 2021. Beyond 2100: Elevation capital disguises salt marsh vulnerability to sea-level rise in Georgia, USA. Estuarine, Coastal and Shelf Science 249: 107093. https://doi.org/10.1016/j.ecss.2020.107093.

    Article  Google Scholar 

  • Liaw, A., and M. Wiener. 2002. Classification and regression by random forest 2: 18–22.

  • Lovelock, C.E., D.R. Cahoon, D.A. Friess, G.R. Guntenspergen, K.W. Krauss, R. Reef, K. Rogers, M.L. Saunders, F. Sidik, A. Swales, N. Saintilan, L. Thuyen, and T. Tran. 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526: 559–563. https://doi.org/10.1038/nature15538.

    Article  CAS  Google Scholar 

  • Luo, L., D. Apps, S. Arcand, H. Xu, M. Pan, and M. Hoerling. 2017. Contribution of temperature and precipitation anomalies to the California drought during 2012–2015: Contribution of temperature and precipitation to California drought. Geophysical Research Letters 44: 3184–3192. https://doi.org/10.1002/2016GL072027.

    Article  Google Scholar 

  • Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. 2021. cluster: cluster analysis basics and extensions (version R package version 2.1.2.).

  • Martyr-Koller, R.C., H.W.J. Kernkamp, A. Van Dam, M. Van Der Wegen, L.V. Lucas, N. Knowles, B. Jaffe, and T.A. Fregoso. 2017. Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta. Estuarine, Coastal and Shelf Science 192: 86–107. https://doi.org/10.1016/j.ecss.2017.04.024.

    Article  Google Scholar 

  • McKee, L.J., M. Lewicki, D.H. Schoellhamer, and N.K. Ganju. 2013. Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California. Marine Geology 345: 47–62. https://doi.org/10.1016/j.margeo.2013.03.003.

    Article  Google Scholar 

  • Mitra, S., M. Sudarshan, M.P. Jonathan, S.K. Sarkar, and S. Thakur. 2020. Spatial and seasonal distribution of multi-elements in suspended particulate matter (SPM) in tidally dominated Hooghly River estuary and their ecotoxicological relevance. Environmental Science and Pollution Research 27: 12658–12672. https://doi.org/10.1007/s11356-020-07662-2.

    Article  CAS  Google Scholar 

  • Moftakhari, H.R., D.A. Jay, S.A. Talke, and D.H. Schoellhamer. 2015. Estimation of historic flows and sediment loads to San Francisco Bay, 1849–2011. Journal of Hydrology 529: 1247–1261. https://doi.org/10.1016/j.jhydrol.2015.08.043.

    Article  Google Scholar 

  • Montillet, J.-P., T.I. Melbourne, and W.M. Szeliga. 2018. GPS vertical land motion corrections to sea-level rise estimates in the Pacific Northwest. Journal of Geophysical Research: Oceans 123: 1196–1212. https://doi.org/10.1002/2017JC013257.

    Article  Google Scholar 

  • Morris, J.T., J. Lynch, K.A. Renken, S. Stevens, M. Tyrrell, and H. Plaisted. 2020. Tidal and hurricane impacts on saltmarshes in the northeastern coastal and barrier network: Theory and empirical results. Estuaries and Coasts 43: 1658–1671. https://doi.org/10.1007/s12237-020-00790-5.

    Article  CAS  Google Scholar 

  • Morris, J.T., J.Z. Drexler, L.J.S. Vaughn, and A.H. Robinson. 2022. An assessment of future tidal marsh resilience in the San Francisco Estuary through modeling and quantifiable metrics of sustainability. Frontiers in Environmental Science 10: 1039143. https://doi.org/10.3389/fenvs.2022.1039143.

    Article  Google Scholar 

  • Mudd, S.M., A. D’Alpaos, and J.T. Morris. 2010. How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research 115: F03029. https://doi.org/10.1029/2009JF001566.

    Article  Google Scholar 

  • NOAA. 2023. California coastal demographics, economy, and natural hazards. Federal website. Office For Coastal Management, California.

  • Pierce, D.W., J.F. Kalansky, and D.R. Cayan. 2018. Climate, drought, and sea level rise scenarios for the fourth California climate assessment. California’s Fourth Climate Change Assessment, California Energy Commission. CNRA-CEC-2018–006.

  • Potouroglou, M., J.C. Bull, K.W. Krauss, H.A. Kennedy, M. Fusi, D. Daffonchio, M.M. Mangora, M.N. Githaiga, K. Diele, and M. Huxham. 2017. Measuring the role of seagrasses in regulating sediment surface elevation. Scientific Reports 7: 11917. https://doi.org/10.1038/s41598-017-12354-y.

    Article  CAS  Google Scholar 

  • R Core Team. 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Rankin, L., S. Jones, C. Janousek, K. Buffington, J.Y. Takekawa, and K.M. Thorne. 2023. Marsh vegetation surveys across the San Francisco Bay Estuary, 2008–2018. U.S. Geological Survey Data Release. ScienceBase. https://doi.org/10.5066/P94F802H.

  • Restaino, C., D.J.N. Young, B. Estes, S. Gross, A. Wuenschel, M. Meyer, and H. Safford. 2019. Forest structure and climate mediate drought-induced tree mortality in forests of the Sierra Nevada, USA. Ecological Applications 29: e01902. https://doi.org/10.1002/eap.1902.

    Article  Google Scholar 

  • Roberts, L.J., R. Burnett, J. Tietz, and S. Veloz. 2019. Recent drought and tree mortality effects on the avian community in southern Sierra Nevada: a glimpse of the future? Ecological Applications 29. https://doi.org/10.1002/eap.1848.

  • Robeson, S.M. 2015. Revisiting the recent California drought as an extreme value. Geophysical Research Letters 42: 6771–6779. https://doi.org/10.1002/2015GL064593.

    Article  Google Scholar 

  • Rogers, K., N. Saintilan, and C.D. Woodroffe. 2014. Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: Implications for coastal wetland response to climate change. Estuarine, Coastal and Shelf Science 149: 46–56. https://doi.org/10.1016/j.ecss.2014.07.009.

    Article  Google Scholar 

  • Rogers, K., J.J. Kelleway, N. Saintilan, J.P. Megonigal, J.B. Adams, J.R. Holmquist, M. Lu, et al. 2019. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567: 91–95. https://doi.org/10.1038/s41586-019-0951-7.

    Article  CAS  Google Scholar 

  • Rohde, J. 2021. Humboldt Bay shoreline, north Eureka to south Arcata: a history of cultural influences. Humboldt State University Press.

  • Rosencranz, J.A., N.K. Ganju, R.F. Ambrose, S.M. Brosnahan, P.J. Dickhudt, G.R. Guntenspergen, G.M. MacDonald, J.Y. Takekawa, and K.M. Thorne. 2016. Balanced sediment fluxes in Southern California’s Mediterranean-climate zone salt marshes. Estuaries and Coasts 39: 1035–1049. https://doi.org/10.1007/s12237-015-0056-y.

    Article  CAS  Google Scholar 

  • Rousseeuw, P.J. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20: 53–65.

    Article  Google Scholar 

  • Saintilan, N., K.E. Kovalenko, G. Guntenspergen, K. Rogers, J.C. Lynch, D.R. Cahoon, C.E. Lovelock, D.A. Friess, E. Ashe, K.W. Krauss, N. Cormier, T. Spencer, J. Adams, J. Raw, C. Ibanez, F. Scarton, S. Temmerman, P. Meire, T. Maris, K. Thorne, J. Brazner, and G. L., Chmura, T. Bowron, V. P. Gamage, K. Cressman, C. Endris, C. Marconi, P. Marcum, K. St. Laurent, W. Reay, K. B. Raposa, J. A. Garwood, and N. Khan. 2022. Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science 377: 523–527. https://doi.org/10.1126/science.abo7872.

    Article  CAS  Google Scholar 

  • Schile, L.M., J.C. Callaway, J.T. Morris, D. Stralberg, V.T. Parker, and M. Kelly. 2014. Modeling tidal marsh distribution with sea-level rise: Evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. PLoS ONE 9: e88760. https://doi.org/10.1371/journal.pone.0088760.

    Article  CAS  Google Scholar 

  • Schulze, D., K. Jensen, and S. Nolte. 2022. Effects of small-scale patterns of vegetation structure on suspended sediment concentration and sediment deposition in a salt marsh. Estuarine, Coastal and Shelf Science 278: 108125. https://doi.org/10.1016/j.ecss.2022.108125.

    Article  Google Scholar 

  • Stark, J., Y. Plancke, S. Ides, P. Meire, and S. Temmerman. 2016. Coastal flood protection by a combined nature-based and engineering approach: Modeling the effects of marsh geometry and surrounding dikes. Estuarine, Coastal and Shelf Science 175: 34–45. https://doi.org/10.1016/j.ecss.2016.03.027.

    Article  Google Scholar 

  • Stern, M.A., L.E. Flint, A.L. Flint, N. Knowles, and S.A. Wright. 2020. The future of sediment transport and streamflow under a changing climate and the implications for long‐term resilience of the San Francisco Bay‐Delta. Water Resources Research 56. https://doi.org/10.1029/2019WR026245.

  • Stralberg, D., M. Brennan, J.C. Callaway, J.K. Wood, L.M. Schile, D. Jongsomjit, M. Kelly, V.T. Parker, and S. Crooks. 2011. Evaluating tidal marsh sustainability in the face of sea-level rise: A hybrid modeling approach applied to San Francisco Bay. PLoS ONE 6: e27388. https://doi.org/10.1371/journal.pone.0027388.

    Article  CAS  Google Scholar 

  • Swanson, K.M., J.Z. Drexler, D.H. Schoellhamer, K.M. Thorne, M.L. Casazza, C.T. Overton, J.C. Callaway, and J.Y. Takekawa. 2014. Wetland accretion rate model of ecosystem resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary. Estuaries and Coasts 37: 476–492. https://doi.org/10.1007/s12237-013-9694-0.

    Article  Google Scholar 

  • Taherkhani, M., S. Vitousek, R.K. Walter, J. O’Leary, and A.P. Khodadoust. 2023. Flushing time variability in a short, low-inflow estuary. Estuarine, Coastal and Shelf Science 284: 108277. https://doi.org/10.1016/j.ecss.2023.108277.

    Article  Google Scholar 

  • Takekawa, J.Y., K.M. Thorne, K.J. Buffington, C.M. Freeman, K.W. Powelson, and G. Block. 2013. Assessing marsh response from sea-level rise applying local site conditions: Humboldt Bay National Wildlife Refuge. Data Summary Report. Vallejo, CA: U.S. Geological Survey.

  • Thorne, K., G. MacDonald, G. Guntenspergen, R. Ambrose, K. Buffington, B. Dugger, C. Freeman, C. Janousek, L. Brown, J. Rosencranz, J. Holmquist, J. Smol, K. Hargan, and J. Takekawa. 2018. U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Science Advances 4: eaao3270. https://doi.org/10.1126/sciadv.aao3270.

  • Thorne, K., S. Jones, C. Freeman, K. Buffington, C. Janousek, and G. Guntenspergen. 2022. Atmospheric river storm flooding influences tidal marsh elevation building processes. Journal of Geophysical Research: Biogeosciences 127. https://doi.org/10.1029/2021JG006592.

  • Thorne, K.M., D.L. Elliott-Fisk, G.D. Wylie, W.M. Perry, and J.Y. Takekawa. 2014. Importance of biogeomorphic and spatial properties in assessing a tidal salt marsh vulnerability to sea-level rise. Estuaries and Coasts 37: 941–951. https://doi.org/10.1007/s12237-013-9725-x.

    Article  CAS  Google Scholar 

  • Thorne, K.M., C.M. Freeman, J.A. Rosencranz, N.K. Ganju, and G.R. Guntenspergen. 2019. Thin-layer sediment addition to an existing salt marsh to combat sea-level rise and improve endangered species habitat in California, USA. Ecological Engineering 136: 197–208. https://doi.org/10.1016/j.ecoleng.2019.05.011.

    Article  Google Scholar 

  • Thorne, K.M., B.D. Dugger, K.J. Buffington, C.M. Freeman, C.N. Janousek, K.W. Powelson, G.R. Guntenspergen, and J.Y. Takekawa. 2015. Marshes to mudflats—effects of sea-level rise on tidal marshes along a latitudinal gradient in the Pacific Northwest. Open-File Report 2015–1204. Open-File Report. U.S. Geological Survey.

  • Thorne, K.M., G. MacDonald, R. Ambrose, K.J. Buffington, C.M. Freeman, C. Janousek, L. Brown, J.R. Holmquist, G.R. Guntenspergen, K.W. Powelson, P.L. Barnard, and J.Y. Takekawa. 2016. Effects of climate change on tidal marshes along a latitudinal gradient in California. Open-File Report 2016–1125. Open-File Report. U.S. Geological Survey.

  • Turner, R.E., E.M. Swenson, and C.S. Milan. 2002. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In Concepts and Controversies in Tidal Marsh Ecology, ed. M.P. Weinstein and D.A. Kreeger, 583–595. Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47534-0_27.

  • Ursino, N., S. Silvestri, and M. Marani. 2004. Subsurface flow and vegetation patterns in tidal environments: subsurface flow and vegetation patterns. Water Resources Research 40. https://doi.org/10.1029/2003WR002702.

  • U.S. Geological Survey, U.S. Environmental Protection Agency, USDA Forest Service, and other Federal, State and local partners. 2013. Watershed Boundaries, HUC 10, for California. Watershed Boundaries, HUC 10, for California.

  • Wallace, K.J., J.C. Callaway, and J.B. Zedler. 2005. Evolution of tidal creek networks in a high sedimentation environment: A 5-year experiment at Tijuana Estuary, California. Estuaries 28: 795–811. https://doi.org/10.1007/BF02696010.

    Article  Google Scholar 

  • Weis, D.A., J.C. Callaway, and R.M. Gersberg. 2001. Vertical accretion rates and heavy metal chronologies in wetland sediments of the Tijuana Estuary. Estuaries 24: 840. https://doi.org/10.2307/1353175.

    Article  CAS  Google Scholar 

  • Wheatcroft, R.A., C.K. Sommerfield, D.E. Drake, J.C. Borgeld, and C.A. Nittrouer. 1997. Rapid and widespread dispersal of flood sediment on the Northern California margin. Geology 25: 163. https://doi.org/10.1130/0091-7613.

    Article  Google Scholar 

  • Wilson, A.M., T. Evans, W. Moore, C.A. Schutte, S.B. Joye, A.H. Hughes, and J.L. Anderson. 2015. Groundwater controls ecological zonation of salt marsh macrophytes. Ecology 96: 840–849. https://doi.org/10.1890/13-2183.1.

    Article  Google Scholar 

  • Woo, I., and J.Y. Takekawa. 2012. Will inundation and salinity levels associated with projected sea level rise reduce the survival, growth, and reproductive capacity of Sarcocornia pacifica (pickleweed)? Aquatic Botany 102: 8–14. https://doi.org/10.1016/j.aquabot.2012.03.014.

    Article  Google Scholar 

  • Wood, W.B., J.M. Visser, S.C. Piazza, L.A. Sharp, L.C. Hundy, and T.E. McGinnis. 2015. Coastwide Reference Monitoring System (CRMS) vegetation volume index—an assessment tool for marsh habitat focused on the three dimensional structure at CRMS vegetation monitoring stations. Open-File Report, U.S. Geological Survey Open-File Report 2015–1206.

  • Xin, P., J. Kong, L. Li, and D.A. Barry. 2012. Effects of soil stratigraphy on pore-water flow in a creek-marsh system. Journal of Hydrology 475: 175–187. https://doi.org/10.1016/j.jhydrol.2012.09.047.

    Article  Google Scholar 

  • Xu, Y., C.R. Esposito, M. Beltrán-Burgos, and H.M. Nepf. 2022. Competing effects of vegetation density on sedimentation in deltaic marshes. Nature Communications 13: 4641. https://doi.org/10.1038/s41467-022-32270-8.

    Article  CAS  Google Scholar 

  • Young, D.J.N., J.T. Stevens, J.M. Earles, J. Moore, A. Ellis, A.L. Jirka, and A.M. Latimer. 2017. Long-term climate and competition explain forest mortality patterns under extreme drought. Edited by Francisco Lloret. Ecology Letters 20: 78–86. https://doi.org/10.1111/ele.12711.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank land managers from the US Fish and Wildlife Service, NOAA National Estuarine Research Reserve, California Department of Fish and Wildlife, East Bay Regional Parks, Marin County, Morro Bay National Estuary Program, and the US Navy for granting us site access to conduct this study. We express thanks to countless field technicians who assisted in the collection of this data over many years. We would like to thank JY Takekawa for their support in developing the study design. GRG and JN acknowledge support from the USGS Ecosystem Mission Area, Climate Research and Development Program. KT, MB, LR, and CF acknowledge support from the USGS Ecosystem Mission Area and Priority Ecosystems. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Funding

U.S. Geological Survey

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen M. Thorne.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Communicated by Charles T. Roman

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1311 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorne, K.M., Bristow, M.L., Rankin, L.L. et al. Understanding Marsh Elevation and Accretion Processes and Vulnerability to Rising Sea Levels Across Climatic and Geomorphic Gradients in California, USA. Estuaries and Coasts (2023). https://doi.org/10.1007/s12237-023-01298-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12237-023-01298-4

Keywords

Navigation