Skip to main content
Log in

High-frequency Dissolved Oxygen Dynamics in an Urban Estuary, the Long Island Sound

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The seasonal occurrence of deep-water hypoxia in western Long Island Sound (LIS) has been documented for decades by water quality cruise surveys and fixed mooring buoys. While previous studies have focused on factors modulating bottom dissolved oxygen (DO) at subtidal timescales, here we analyze continuous timeseries data from a moored buoy during summers 2021 and 2022 to examine factors controlling high-frequency fluctuations in surface and bottom DO at diurnal and semidiurnal timescales. Fluctuations in surface DO at diurnal timescales are associated with biological production, while fluctuations in bottom DO near semidiurnal timescales are associated with horizontal advection of DO by tides from the upper East River tidal strait into western LIS. Results from timeseries analysis are supported by weekly cruise surveys that resolve horizontal and vertical DO gradients in the western narrows. However, inferences regarding the duration of hypoxia during a given summer vary across datasets in part because weekly survey data do not resolve dominant timescales of variability within a particular summer. While prior studies have illustrated the importance of nutrient loading, stratification, and wind in controlling the development of hypoxia, the results presented here demonstrate the role of tidal advection in modulating hypoxia in far western LIS. Despite stronger stratification in 2021, the duration of hypoxia was 11.1 days shorter compared to 2022 in part due to greater advection of DO by tidal currents that intermittently increased bottom DO near the buoy. Furthermore, five-year averaged hypoxic area in the western narrows has increased since 2017, which highlights the spatially variable response of DO to nutrient load reductions. Future analysis of hypoxia in LIS should focus on leveraging high-frequency information contained in continuous datasets to improve estimates of hypoxia based on less temporally resolved water quality surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data available upon publication. Data https://doi.org/10.23719/1529419.

References

  • Beck, N.G., and K.W. Bruland. 2000. Diel biogeochemical cycling in a hyperventilating shallow estuarine environment. Estuaries 23: 177–187. https://doi.org/10.2307/1352825.

    Article  CAS  Google Scholar 

  • Bennett, D.C., J. O’Donnell, W.F. Bohlen, and A. Houk. 2010. Tides and overtides in Long Island Sound. Journal of Marine Research 68: 1–35.

    Article  Google Scholar 

  • Blumberg, A.F., and D.W. Pritchard. 1997. Estimates of the transport through the East River, New York. Journal of Geophysical Research 102: 5685–5703.

    Article  ADS  CAS  Google Scholar 

  • Borowiec, B.G., K.L. Darcy, D.M. Gillette, and G.R. Scott. 2015. Distinct physiological strategies are used to cope with constant hypoxia and intermittent hypoxia in killifish (Fundulus heteroclitus). The Journal of Experimental Biology 218: 1198–1211. https://doi.org/10.1242/jeb.209692.

    Article  PubMed  Google Scholar 

  • Bowman, M.J. 1976. The tides of the East River, New York. Journal of Geophysical Research 81: 1609–1616.

    Article  ADS  Google Scholar 

  • Bowman, M.J. 1977. Nutrient distributions and transport in Long Island Sound. Estuarine and Coastal Marine Science 5: 531–548.

    Article  ADS  CAS  Google Scholar 

  • Bratton, S.D., B.A. Colle, and R.E. Wilson. 2015. Synoptic flow patterns and decadal variations of wind-induced mixing over western Long Island Sound. Journal of Geophysical Research: Atmospheres 120: 10784–10796. https://doi.org/10.1002/2015JD023080.

    Article  ADS  Google Scholar 

  • Breitburg, D.L. 1990. Near-shore hypoxia in the Chesapeake Bay: Patterns and relationships among physical factors. Estuarine, Coastal and Shelf Science 30: 593–609.

    Article  ADS  CAS  Google Scholar 

  • Bricker, S.B., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner. 2008. Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8 (1): 21–32. https://doi.org/10.1016/j.hal.2008.08.028.

    Article  CAS  Google Scholar 

  • Cole, B., and J. Cloern. 1987. An empirical model for estimating phytoplankton productivity in estuaries. Marine Ecology Progress Series 36: 299–305.

    Article  ADS  Google Scholar 

  • Cross, E.L., C.S. Murray, and H. Baumann. 2019. Diel and tidal pCO2 × O2 fluctuations provide physiological refuge to early life stages of a coastal forage fish. Science and Reports 9: 18146. https://doi.org/10.1038/s41598-019-53930-8.

    Article  ADS  CAS  Google Scholar 

  • CTDEEP. 2021. 2021 Long Island Sound hypoxia season review. Connecticut Department of Energy and Environmental Protection, Interstate Environmental Commission, U.S. Environmental Protection Agency. https://portal.ct.gov/-/media/DEEP/water/lis_water_quality/monitoring/2021/2021-Combined-Report_final.pdf. Accessed 22 Nov 2022.

  • D’Avanzo, C., and J.N. Kremer. 1994. Diel oxygen dynamics and anoxic events in an eutrophic estuary of Waquoit Bay, Massachusetts. Estuaries 17 (1): 131–139.

    Article  Google Scholar 

  • Duvall, M.S., B.M. Jarvis, J.D. Hagy III., and Y. Wan. 2022. Effects of biophysical processes on diel-cycling hypoxia in a subtropical estuary. Estuaries and Coasts 45: 1615–1630. https://doi.org/10.1007/s12237-021-01040-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eby, L.A., and L.B. Crowder. 2002. Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences 59 (6): 952–965. https://doi.org/10.1139/f02-067.

    Article  Google Scholar 

  • Eby, L.A., L.B. Crowder, C.M. McClellan, C.H. Peterson, and M.J. Powers. 2005. Habitat degradation from intermittent hypoxia: impacts on demersal fishes. Marine Ecology Progress Series 291: 249–262.

    Article  ADS  Google Scholar 

  • Feng, Y., K. Fennel, G.A. Jackson, S.F. DiMarco, and R.D. Hetland. 2014. A model study of the response of hypoxia to upwelling-favorable wind on the northern Gulf of Mexico shelf. Journal of Marine Systems 131: 63–73. https://doi.org/10.1016/j.jmarsys.2013.11.009.

    Article  ADS  Google Scholar 

  • Fennel, K., and J.M. Testa. 2019. Biogeochemical controls on coastal hypoxia. Annual Review of Marine Science 11: 105–130. https://doi.org/10.1146/annurev-marine-010318-095138.

    Article  ADS  PubMed  Google Scholar 

  • Fribance, D.B., J. O’Donnell, and A. Houk. 2013. Residual circulation in western Long Island Sound. Journal of Geophysical Research: Oceans 118: 4727–4745. https://doi.org/10.1002/jgrc.20329.

    Article  ADS  Google Scholar 

  • Gay, P.S., J. O’Donnell, and C.A. Edwards. 2004. Exchange between Long Island Sound and adjacent waters. Journal of Geophysical Research 109: C06017. https://doi.org/10.1029/2004JC002319.

    Article  ADS  Google Scholar 

  • Goring, D.G., and V.I. Nikora. 2002. Despiking acoustic doppler velocimeter data. Journal of Hydraulic Engineering Division of the American Society of Civil Engineers 128 (1): 117–126.

    Article  Google Scholar 

  • Greene, R.M., J.C. Lehrter, and J.D. Hagy III. 2009. Multiple regression models for hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico. Ecological Applications 19 (5): 1161–1175.

    Article  PubMed  Google Scholar 

  • Hagy, J., III., W. Boynton, C. Keefe, and K. Wood. 2004. Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries 27 (4): 634–658.

    Article  CAS  Google Scholar 

  • Jay, D.A., and M.J. Bowman. 1975. The physical oceanography and water quality of New York Harbor and western Long Island Sound. Stony Brook, New York: Marine Sciences Research Center Technical Report # 23.

    Google Scholar 

  • Kellogg, D. 2018. Hypoxia in Narragansett Bay, an analysis of Narragansett Bay fixed site monitoring network data 2001 to 2015. State of Rhode Island Department of Environmental Management, Office of Water Resources.

    Google Scholar 

  • Kenefick, A.M. 1985. Barotropic M2 tides and tidal currents in Long Island Sound: a numerical model. Journal of Coastal Research 1 (2): 117–128.

    Google Scholar 

  • Koppelman, L.E., P.K. Weyl, M.G. Gross, and D.S. Davies. 1976. The Urban Sea: Long Island Sound, 223. New York: Praeger Publishers.

    Google Scholar 

  • Lee, Y.J., and K. Lwiza. 2005. Interannual variability of temperature and salinity in shallow water: Long Island Sound, New York. Journal of Geophysical Research: Oceans 110: C09022. https://doi.org/10.1029/2004JC002507.

    Article  ADS  Google Scholar 

  • Lee, Y.J., and K.M.M. Lwiza. 2008. Characteristics of bottom dissolved oxygen in Long Island Sound, New York. Estuarine, Coastal and Shelf Science 76: 187–200. https://doi.org/10.1016/j.ecss.2007.07.001.

    Article  ADS  Google Scholar 

  • Li, Y., S.L. Meseck, M.S. Dixon, and G.H. Wikfors. 2018. The East River tidal strait, New York City, New York, a high-nutrient, low-chlorophyll coastal system. International Aquatic Research 10: 65–77. https://doi.org/10.1007/s40071-018-0189-2.

    Article  Google Scholar 

  • LISS. 2022. Severely hypoxic and anoxic areas. https://longislandsoundstudy.net/ecosystem-target-indicators/area-of-hypoxia/. Accessed 13 Sep 2022.

  • Ma, X., A. Liu, Q. Zhao, B. Wang, D. Tian, Q. Meng, and F. Zhou. 2022. Temporal variation of summer hypoxia off Changjiang Estuary during 1997–2014 and its association with ENSO. Frontiers in Marine Science 9: 897063. https://doi.org/10.3389/fmars.2022.897063.

    Article  Google Scholar 

  • MacVean, L., P. Trowbridge, L. Lewis, J. Hobbs, Z. Sylvester, T. Winchell, and D. Senn. 2018. Dissolved oxygen in South San Francisco Bay: variability, important processes, and implications for understanding fish habitat. Richmond, CA: San Francisco Estuary Institute Technical Report.

    Google Scholar 

  • Maryland Department of Natural Resources. 2022. Eyes on the bay: continuous monitoring station information. Retrieved from https://eyesonthebay.dnr.maryland.gov/eyesonthebay/ConMonStationTable.cfm. Accessed 15 Dec 2022.

  • McCardell, G., and J. O’Donnell. 2014. Estimates of horizontal fluxes of oxygen, heat, and salt in western Long Island Sound. Journal of Geophysical Research: Oceans 119: 7267–7276. https://doi.org/10.1002/2014JC009904.

    Article  ADS  CAS  Google Scholar 

  • McCardell, G., J. O’Donnell, A.J. Souza, and M.R. Palmer. 2016. Internal tides and tidal cycles of vertical mixing in western Long Island Sound. Journal of Geophysical Research: Oceans 121: 1063–1084. https://doi.org/10.1002/2015JC010796.

    Article  ADS  Google Scholar 

  • Millero, F.J., and A. Poisson. 1981. International one-atmosphere equation of state of seawater. Deep Sea Research Part a. Oceanographic Research Papers 28: 625–629.

    Article  ADS  Google Scholar 

  • Mori, N., T. Suzuki, and S. Kakuno. 2007. Noise of acoustic Doppler velocimeter data in bubbly flows. Journal of Engineering Mechanics 133 (1): 122–125. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(122).

    Article  Google Scholar 

  • Murphy, R.R., W.M. Kemp, and W.P. Ball. 2011. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts 34: 1293–1309. https://doi.org/10.1007/s12237-011-9413-7.

    Article  CAS  Google Scholar 

  • Murphy, R.R., E. Perry, J. Harcum, and J. Keisman. 2019. A generalized additive model approach to evaluating water quality: Chesapeake Bay case study. Environmental Modelling and Software 118: 1–13. https://doi.org/10.1016/j.envsoft.2019.03.027.

    Article  Google Scholar 

  • Ning, X., C. Lin, J. Su, C. Liu, Q. Hao, and F. Le. 2011. Long-term changes of dissolved oxygen, hypoxia, and the responses of the ecosystems in the East China Sea from 1975 to 1995. Journal of Oceanography 67: 59–75. https://doi.org/10.1007/s10872-011-0006-7.

    Article  CAS  Google Scholar 

  • Obenour, D.R., A.M. Michalak, Y. Zhou, and D. Scavia. 2012. Quantifying the impacts of stratification and nutrient loading on hypoxia in the northern Gulf of Mexico. Environmental Science and Technology 46 (10): 5489–5496. https://doi.org/10.1021/es204481a.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Obenour, D.R., D. Scavia, N.N. Rabalais, R.E. Turner, and A.M. Michalak. 2013. Retrospective analysis of midsummer hypoxic area and volume in the northern Gulf of Mexico, 1985–2011. Environmental Science and Technology 47 (17): 9808–9815. https://doi.org/10.1021/es400983g.

    Article  ADS  CAS  PubMed  Google Scholar 

  • O’Donnell, J., H.G. Dam, W.F. Bohlen, W. Fitzgerald, P.S. Gay, A.E. Houk, D.C. Cohen, and M.M. Howard-Strobel. 2008. Intermittent ventilation in the hypoxic zone of western Long Island Sound during the summer of 2004. Journal of Geophysical Research 113: C09025. https://doi.org/10.1029/2007JC004716.

    Article  ADS  Google Scholar 

  • O’Donnell, J., R.E. Wilson, K. Lwiza, M. Whitney, W.F. Bohlen, D. Codiga, D.B. Fribance, T. Fake, M. Bowman, and J. Varekamp. 2014. The physical oceanography of the Long Island Sound estuary. In Long Island Sound: prospects for the Urban Sea, ed. J.S. Latimer, M.A. Tedesco, R.L. Swanson, C. Yarish, P.E. Stacey, and C. Garza, 79–158. Springer Science and Business Media.

    Chapter  Google Scholar 

  • Oppenheim, A.V., and R.W. Schafer. 2010. Discrete-time signal processing, 3rd ed. Prentice Hall.

    Google Scholar 

  • Parker, C.A., and J.E. O’Reilly. 1991. Oxygen depletion in Long Island Sound: a historical perspective. Estuaries 14: 248–264.

    Article  CAS  Google Scholar 

  • Regan, M.D., and J.G. Richards. 2017. Rates of hypoxia induction alter mechanisms of O2 uptake and the critical O2 tension of goldfish. Journal of Experimental Biology 220: 2536–2544. https://doi.org/10.1242/jeb.154948.

    Article  PubMed  Google Scholar 

  • Sanford, L.P., K.G. Sellner, and D.L. Breitburg. 1990. Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay. Journal of Marine Research 48: 567–590.

    Article  CAS  Google Scholar 

  • Scavia, D., N.N. Rabalais, R.E. Turner, D. Justic, and W.J. Wiseman. 2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnology and Oceanography 48 (3): 951–956. https://doi.org/10.4319/lo.2003.48.3.0951.

    Article  ADS  CAS  Google Scholar 

  • Scully, M.E., C. Friedrichs, and J. Brubaker. 2005. Control of estuarine and mixing by wind-induced straining of the estuarine density field. Estuaries 28 (3): 321–326.

    Article  Google Scholar 

  • Sharp, J. 2010. Estuarine oxygen dynamics: what can we learn about hypoxia from long-time records in the Delaware estuary? Limnology and Oceanography 55 (2): 535–548.

    ADS  CAS  Google Scholar 

  • Shen, J., T. Wang, J. Herman, P. Mason, and G.L. Arnold. 2008. Hypoxia in a coastal embayment of the Chesapeake Bay: a model diagnostic study of oxygen dynamics. Estuaries and Coasts 31: 652–663. https://doi.org/10.1007/s12237-008-9066-3.

    Article  CAS  Google Scholar 

  • Signell, R.P., J.H. List, and A.S. Farris. 2000. Bottom currents and sediment transport in Long Island Sound: a modeling study. Journal of Coastal Research 16 (3): 551–566.

    Google Scholar 

  • Simpson, J.H., J. Brown, J. Matthews, and G. Allen. 1990. Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13 (2): 125–132.

    Article  Google Scholar 

  • Thomas, E., T. Gapotchenko, J.C. Varekamp, E.L. Mecray, and M. Buchholz ten Brink. 2000. Benthic foraminifera and environmental changes in Long Island Sound. Journal of Coastal Research 16 (3): 641–655.

    Google Scholar 

  • Tian, R., X. Cai, J.M. Testa, D.C. Brady, C.F. Cerco, and L.C. Linker. 2022. Simulation of high-frequency dissolved oxygen dynamics in a shallow estuary, the Corsica River, Chesapeake Bay. Frontiers in Marine Science 9: 1058839. https://doi.org/10.3389/fmars.2022.1058839.

    Article  Google Scholar 

  • Torgersen, T., E. DeAngelo, and J. O’Donnell. 1997. Calculations of horizontal mixing rates using 222Rn and the controls on hypoxia in western Long Island Sound, 1991. Estuaries 20 (2): 328–345.

    Article  CAS  Google Scholar 

  • Turekian, K.K., N. Tanaka, V.C. Turekian, T. Torgersen, and E.C. Deangelo. 1996. Transfer rates of dissolved tracers through estuaries based on 228Ra: a study of Long Island Sound. Continental Shelf Research 16 (7): 863–873. https://doi.org/10.1016/0278-4343(95)00039-9.

    Article  ADS  Google Scholar 

  • U.S. EPA. 2009. Total maximum daily loads (TMDLs) at work in Connecticut and New York. December, EPA 841-F-09–002C, 6p.

    Google Scholar 

  • Varekamp, J.C., A.E. McElroy, J.R. Mullaney, and V.T. Breslin. 2014. Metals, organic compounds, and nutrients in Long Island Sound: sources, magnitudes, trends, and impacts. In Long Island Sound: prospects for the Urban Sea, ed. J.S. Latimer, M.A. Tedesco, R.L. Swanson, C. Yarish, P.E. Stacey, and C. Garza, 203–283. Springer Science and Business Media.

    Chapter  Google Scholar 

  • Vaquer-Sunyer, R., and C.M. Duarte. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences 105 (40): 15452–15457. https://doi.org/10.1073/pnas.0803833105.

    Article  ADS  Google Scholar 

  • Vieira, M.E.C. 2000. The long-term residual circulation in Long Island Sound. Estuaries 23 (2): 199–207. https://doi.org/10.2307/1352827.

    Article  Google Scholar 

  • von Glasow, R., T.D. Jickells, A. Baklanov, G.R. Carmichael, T.M. Church, L. Gallardo, and T. Zhu. 2013. Megacities and large urban agglomerations in the coastal zone: interactions between atmosphere, land, and marine ecosystems. Ambio 42: 13–28. https://doi.org/10.1007/s13280-012-0343-9.

    Article  ADS  CAS  Google Scholar 

  • Wahl, T.L. 2003. Discussion of ‘Despiking acoustic doppler velocimeter data.’ Journal of Hydraulic Engineering Division of the American Society of Civil Engineers 129 (6): 484–488.

    Article  Google Scholar 

  • Welsh, B.L., and F.C. Eller. 1991. Mechanisms controlling summertime oxygen depletion in western Long Island Sound. Estuaries 14: 265–278.

    Article  CAS  Google Scholar 

  • Whitney, W.M., and P. Vlahos. 2021. Reducing hypoxia in an urban estuary despite climate warming. Environmental Science and Technology 55: 941–951. https://doi.org/10.1021/acs.est.0c03964.

    Article  ADS  CAS  PubMed  Google Scholar 

  • Williams, K.J., A.A. Cassidy, C.E. Verhille, S.G. Lamarre, and T.J. MacCormack. 2019. Diel cycling hypoxia enhances hypoxia tolerance in rainbow trout (Oncorhynchus mykiss): evidence of physiological and metabolic plasticity. Journal of Experimental Biology 222: jeb206045. https://doi.org/10.1242/jeb.206045.

    Article  PubMed  Google Scholar 

  • Wilson, R.E., S.D. Bratton, J. Wang, and B.A. Colle. 2015. Evidence for directional wind response in controlling inter-annual variations in duration and areal extent of summertime hypoxia in western Long Island Sound. Estuaries and Coasts 38: 1735–1743. https://doi.org/10.1007/s12237-014-9914-2.

    Article  Google Scholar 

  • Wilson, R.E., H.A. Crowley, B.J. Brownawell, and R.L. Swanson. 2005. Simulations of transient pesticide concentrations in Long Island Sound for late summer 1999 with a high resolution coastal circulation model. Journal of Shellfish Research 24 (3): 865–875.

    Article  Google Scholar 

  • Wilson, R.E., R.L. Swanson, and H.A. Crowley. 2008. Perspectives on long-term variations in hypoxic conditions in western Long Island Sound. Journal of Geophysical Research 113: C12011. https://doi.org/10.1029/2007JC004693.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank LISICOS, IEC, and CTDEEP staff for their multi-decadal efforts to collect field data in Long Island Sound. We also thank Cheryl Brown, Brandon Jarvis and Chris Knightes for their helpful comments on the manuscript. This research was supported by the U.S. Environmental Protection Agency Region 2 and Long Island Sound Study. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Use of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Environmental Protection Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa S. Duvall.

Additional information

Communicated by Nick Nidzieko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duvall, M.S., Hagy, J.D., Ammerman, J.W. et al. High-frequency Dissolved Oxygen Dynamics in an Urban Estuary, the Long Island Sound. Estuaries and Coasts 47, 415–430 (2024). https://doi.org/10.1007/s12237-023-01278-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-023-01278-8

Keywords

Navigation