Skip to main content

Advertisement

Log in

Assessment of Habitat Suitability for Common Cockles in the Ria the Aveiro Lagoon Under Average and Projected Environmental Conditions

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The common cockle Cerastoderma edule is a widespread bivalve species inhabiting estuarine systems across the North East Atlantic, where it provides several ecosystem services, and represents a valuable fishery resource for local economies. However, anthropogenic pressure and more frequent extreme weather events threaten the resilience of the species. Spatially explicit information on species distribution is critical for the implementation of management and conservation practices. This study assessed the potential distribution of C. edule in the Ria de Aveiro by estimating the habitat suitability using an ensemble approach based on ecological niche modeling and recently developed hydrodynamic and water quality models to forecast both average and projected estuarine conditions. The models were developed for the summer of 2013 and spring of 2019 and potential range shifts in the species distribution were forecasted under projected environmental conditions: high and low estimates of freshwater discharge, a 2 °C increase in water temperature, and the combined effect of low freshwater discharge and increased water temperature. The results suggest that salinity, time of submersion, and current velocity play an important role in the distribution of cockles, and large areas were consistently classified with high habitat suitability. Increased freshwater discharge (both seasons) and low discharge coupled to increased temperature (spring) resulted in large decreases in suitable habitat. Conversely, low freshwater discharges and average (unchanged) temperatures increased the suitable habitat in the outermost regions of the Ria. The spatially explicit information provided contributes to a better understanding of the vulnerability of C. edule in the Ria de Aveiro to extreme weather events (e.g., droughts, river floods) and may support adaptive management strategies of the cockle fishery during these conditions. Moreover, this approach can be transferred to other estuarine ecosystems for which data describing the environmental conditions (e.g., derived from numerical models), and information about species presence are available (including data-poor species).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allouche, O., A. Tsoar, and R. Kadmon. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x.

    Article  Google Scholar 

  • Araújo, M.B., and M. New. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22: 42–47. https://doi.org/10.1016/j.tree.2006.09.010.

    Article  Google Scholar 

  • Araújo, M.B., R.J. Whittaker, R.J. Ladle, and M. Erhard. 2005. Reducing uncertainty in projections of extinction risk from climate change. Global Ecol Biogeogr 14: 529–538. https://doi.org/10.1111/j.1466-822x.2005.00182.x.

    Article  Google Scholar 

  • Assis, J., E.A. Serrão, C.M. Duarte, E. Fragkopoulou, and D. Krause-Jensen. 2022. Major expansion of marine forests in a warmer arctic. Frontiers in Marine Science 9. https://doi.org/10.3389/fmars.2022.850368.

  • Boyce, M.S., P.R. Vernier, S.E. Nielsen, and F.K.A. Schmiegelow. 2002. Evaluating resource selection functions. Ecological Modelling 157: 281–300. https://doi.org/10.1016/s0304-3800(02)00200-4.

    Article  Google Scholar 

  • Braga, H.O., U.M. Azeiteiro, A. Schiavetti, and L. Magalhães. 2022. Checking the changes over time and the impacts of COVID-19 on cockle (Cerastoderma edule) small-scale fisheries in Ria de Aveiro coastal lagoon. Portugal. Mar Policy 135: 104843. https://doi.org/10.1016/j.marpol.2021.104843.

    Article  Google Scholar 

  • Callaway, R., D. Burdon, A. Deasey, K. Mazik, and M. Elliott. 2013. The riddle of the sands: How population dynamics explains causes of high bivalve mortality. Journal of Applied Ecology 50: 1050–1059. https://doi.org/10.1111/1365-2664.12114.

    Article  Google Scholar 

  • Carss, D.N., A.C. Brito, P. Chainho, A. Ciutat, X. De Montaudouin, R.M.F. Otero, M.I. Filgueira, A. Garbutt, M.A. Goedknegt, S.A. Lynch, K.E. Mahony, O. Maire, S.K. Malham, F. Orvain, A. van der Olivier, and S., Jones, L.,. 2020. Ecosystem services provided by a non-cultured shellfish species: The common cockle Cerastoderma edule. Marine Environment Research 158: 104931. https://doi.org/10.1016/j.marenvres.2020.104931.

    Article  CAS  Google Scholar 

  • Cozzoli, F., T.G. da Conceição, J.V. Dalen, X. Fang, V. Gjoni, P.M.J. Herman, Z. Hu, L.M. Soissons, B. Walles, T. Ysebaert, and T.J. Bouma. 2020. Biological and physical drivers of bio-mediated sediment resuspension: A flume study on Cerastoderma edule. Estuarine, Coastal and Shelf Science 241: 106824. https://doi.org/10.1016/j.ecss.2020.106824.

    Article  Google Scholar 

  • Cozzoli, F., M. Eelkema, T.J. Bouma, T. Ysebaert, V. Escaravage, and P.M.J. Herman. 2014. A mixed modeling approach to predict the effect of environmental modification on species distributions. PLoS ONE 9: e89131. https://doi.org/10.1371/journal.pone.0089131.

    Article  CAS  Google Scholar 

  • Dairain, A., O. Maire, G. Meynard, A. Richard, T. Rodolfo-Damiano, and F. Orvain. 2020. Sediment stability: Can we disentangle the effect of bioturbating species on sediment erodibility from their impact on sediment roughness? Marine Environment Research 162: 105147. https://doi.org/10.1016/j.marenvres.2020.105147.

    Article  CAS  Google Scholar 

  • De Montaudouin, X. 1996. Factors involved in growth plasticity of cockles Cerastoderma edule (L.), identified by field survey and transplant experiments. Journal of Sea Research 36: 251–265. https://doi.org/10.1016/s1385-1101(96)90794-7.

    Article  Google Scholar 

  • De Montaudouin, X., and G. Bachelet. 1996. Experimental evidence of complex interactions between biotic and abiotic factors in the dynamics of an intertidal population of the bivalve Cerastoderma edule. Oceanologica Acta, Oceanologica Acta 19.

  • Decleyre, H., K. Heylen, K. Sabbe, B. Tytgat, D. Deforce, F.V. Nieuwerburgh, C.V. Colen, and A. Willems. 2015. A doubling of microphytobenthos biomass coincides with a tenfold increase in denitrifier and total bacterial abundances in intertidal sediments of a temperate estuary. PLoS ONE 10: e0126583. https://doi.org/10.1371/journal.pone.0126583.

    Article  CAS  Google Scholar 

  • Deltares, 2014. Delft3d-FLOW. Simulation of multi-dimensional hydrodynamic flows and transport phenomena, including sediments - User Manual.

  • Di Cola, V., O. Broennimann, B. Petitpierre, F.T. Breiner, M. D’Amen, C. Randin, R. Engler, J. Pottier, D. Pio, A. Dubuis, L. Pellissier, R.G. Mateo, W. Hordijk, N. Salamin, and A. Guisan. 2017. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 774–787. https://doi.org/10.1111/ecog.02671.

    Article  Google Scholar 

  • Dias, J., and S. Mariano. 2011. Numerical modelling of hydrodynamic changes induced by a jetty extension – the case of Ria de Aveiro (Portugal). Journal of Coastal Research 1008.

  • Dias, J.M. 2001. Contribution to the study of the Ria de Aveiro hydrodynamics.

  • Dias, J.M., J. Lopes, and I. Dekeyser. 1999. Hydrological characterisation of Ria de Aveiro, Portugal, in early summer. Oceanologica Acta 22: 473–485. https://doi.org/10.1016/s0399-1784(00)87681-1.

    Article  Google Scholar 

  • Dias, J.M., J.F. Lopes, and I. Dekeyser. 2000. Tidal propagation in Ria de Aveiro Lagoon, Portugal. Phys Chem Earth Part B Hydrology Oceans Atmosphere 25: 369–374. https://doi.org/10.1016/s1464-1909(00)00028-9.

    Article  Google Scholar 

  • Dias, J.M., F. Pereira, A. Picado, C.L. Lopes, J.P. Pinheiro, S.M. Lopes, and P.G. Pinho. 2021. A comprehensive estuarine hydrodynamics-salinity study: Impact of morphologic changes on Ria de Aveiro (Atlantic Coast of Portugal). J Mar Sci Eng 9: 234. https://doi.org/10.3390/jmse9020234.

    Article  Google Scholar 

  • Elith, J., S. Ferrier, F. Huettmann, and J. Leathwick. 2005. The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling 186: 280–289. https://doi.org/10.1016/j.ecolmodel.2004.12.007.

    Article  Google Scholar 

  • Elith, J., J.R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x.

    Article  CAS  Google Scholar 

  • Guisan, A., R. Tingley, J.B. Baumgartner, I. Naujokaitis-Lewis, P.R. Sutcliffe, A.I.T. Tulloch, T.J. Regan, L. Brotons, E. McDonald-Madden, C. Mantyka-Pringle, T.G. Martin, J.R. Rhodes, R. Maggini, S.A. Setterfield, J. Elith, M.W. Schwartz, B.A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M.R. Kearney, H.P. Possingham, and Y.M. Buckley. 2013. Predicting species distributions for conservation decisions. Ecology Letters 16: 1424–1435. https://doi.org/10.1111/ele.12189.

    Article  Google Scholar 

  • Gutiérrez, J.M., R.G. Jones, G.T. Narisma, L.M. Alves, M. Amjad, V. IGorodetskaya, M. Grose, N.A.B. Klutse, S. Krakovska, J. Li, D. Martínez-Castro, L.O. Mearns, S.H. Mernild, T. Ngo-Duc, B. van den Hurk, and J.-H. Yoon. 2021. Atlas. In climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B. (eds.)]. Cambridge University Press. In Press. Interactive Atlas available from Available from http://interactive-atlas.ipcc.ch/.

  • Hastie, T., R. Tibshirani, and A. Buja. 1994. Flexible discriminant analysis by optimal scoring. Journal of American Statistical Association 89: 1255–1270. https://doi.org/10.1080/01621459.1994.10476866.

    Article  Google Scholar 

  • Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Springer Ser Statistics. https://doi.org/10.1007/978-0-387-84858-7.

    Article  Google Scholar 

  • Hayward, P.J., and J.S. Ryland. 1995. Marine fauna of the British Isles and North-West Europe. Clarendon Press.

    Google Scholar 

  • Hiemstra, P.H., E.J. Pebesma, C.J.W. Twenhöfel, and G.B.M. Heuvelink. 2009. Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences 35: 1711–1721. https://doi.org/10.1016/j.cageo.2008.10.011.

    Article  CAS  Google Scholar 

  • Hirzel, A.H., G.L. Lay, V. Helfer, C. Randin, and A. Guisan. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling 199: 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017.

    Article  Google Scholar 

  • Iglesias, J.I.P., and E. Navarro. 1991. Energetics of growth and reproduction in cockles (Cerastoderma edule): Seasonal and age-dependent variations. Marine Biology 111: 359–368. https://doi.org/10.1007/bf01319407.

    Article  Google Scholar 

  • INE. 2020. Fisheries statistics reports. INE - Instituto Nacional de Estatística, Lisboa, Portugal.

  • IPCC. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [WWW Document]. https://epic.awi.de/id/eprint/37530/1/IPCC_AR5_SYR_Final.pdf (accessed 1.6.22).

  • Kater, B., A.G. van Kessel, and J. Baars. 2006. Distribution of cockles Cerastoderma edule in the Eastern Scheldt: Habitat mapping with abiotic variables. Marine Ecology Progress Series 318: 221–227. https://doi.org/10.3354/meps318221.

    Article  Google Scholar 

  • Lauria, V., A.M. Power, C. Lordan, A. Weetman, and M.P. Johnson. 2015. Spatial transferability of habitat suitability models of Nephrops norvegicus among fished areas in the Northeast Atlantic: Sufficiently stable for marine resource conservation? PLoS ONE 10: e0117006. https://doi.org/10.1371/journal.pone.0117006.

    Article  CAS  Google Scholar 

  • Leroy, B., C.N. Meynard, C. Bellard, and F. Courchamp. 2016. virtualspecies, an R package to generate virtual species distributions. Ecography 39: 599–607. https://doi.org/10.1111/ecog.01388.

    Article  Google Scholar 

  • Lopes, C.L., S. Plecha, P.A. Silva, and J.M. Dias. 2013. Influence of morphological changes in a lagoon flooding extension: Case study of Ria de Aveiro (Portugal). Journal of Coastal Research 65: 1158–1163. https://doi.org/10.2112/si65-196.1.

    Article  Google Scholar 

  • Mahony, K.E., S. Egerton, S.A. Lynch, H. Blanchet, M.A. Goedknegt, E. Groves, N. Savoye, X. De Montaudouin, S.K. Malham, and S.C. Culloty. 2022. Drivers of growth in a keystone fished species along the European Atlantic coast: The common cockle Cerastoderma edule. Journal of Sea Research 179: 102148. https://doi.org/10.1016/j.seares.2021.102148.

    Article  Google Scholar 

  • Mahony, K.E., S.A. Lynch, S. Egerton, S. Cabral, X. De Montaudouin, A. Fitch, L. Magalhães, M. Rocroy, and S.C. Culloty. 2020. Mobilisation of data to stakeholder communities. Bridging the research-practice gap using a commercial shellfish species model. Plos One 15: e0238446. https://doi.org/10.1371/journal.pone.0238446.

  • Maia, F., C.M. Barroso, and M.B. Gaspar. 2021. Biology of the common cockle Cerastoderma edule (Linnaeus, 1758) in Ria de Aveiro (NW Portugal): Implications for fisheries management. Journal of Sea Research 171: 102024. https://doi.org/10.1016/j.seares.2021.102024.

    Article  Google Scholar 

  • Melo-Merino, S.M., H. Reyes-Bonilla, and A. Lira-Noriega. 2020. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling 415: 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837.

    Article  Google Scholar 

  • Moreira, M.H., H. Queiroga, M.M. Machado, and M.R. Cunha. 1993. Environmental gradients in a southern Europe estuarine system: Ria de Aveiro, Portugal implications for soft bottom macrofauna colonization. Netherland J Aquat Ecol 27: 465–482. https://doi.org/10.1007/bf02334807.

    Article  Google Scholar 

  • Naimi, B., and M.B. Araújo. 2016. sdm: A reproducible and extensible R platform for species distribution modelling. Ecography 39: 368–375. https://doi.org/10.1111/ecog.01881.

    Article  Google Scholar 

  • Newell, R.I.E., and B.L. Bayne. 1980. Seasonal changes in the physiology, reproductive condition and carbohydrate content of the cockle Cardium (=Cerastoderma) edule (Bivalvia: Cardiidae). Marine Biology 56: 11–19. https://doi.org/10.1007/bf00390589.

    Article  CAS  Google Scholar 

  • Peteiro, L.G., S.A. Woodin, D.S. Wethey, D. Costas-Costas, A. Martínez-Casal, C. Olabarria, and E. Vázquez. 2018. Responses to salinity stress in bivalves: Evidence of ontogenetic changes in energetic physiology on Cerastoderma edule. Sci Rep-Uk 8: 8329. https://doi.org/10.1038/s41598-018-26706-9.

    Article  CAS  Google Scholar 

  • Peterson, A.T., M. Papeş, and J. Soberón. 2015. Mechanistic and correlative models of ecological niches. European J Ecol 1: 28–38. https://doi.org/10.1515/eje-2015-0014.

    Article  Google Scholar 

  • Picado, A., J.M. Dias, and A.B. Fortunato. 2010. Tidal changes in estuarine systems induced by local geomorphologic modifications. Continental Shelf Research 30: 1854–1864. https://doi.org/10.1016/j.csr.2010.08.012.

    Article  Google Scholar 

  • Rakotomalala, C., K. Grangeré, M. Ubertini, M. Forêt, and F. Orvain. 2015. Modelling the effect of Cerastoderma edule bioturbation on microphytobenthos resuspension towards the planktonic food web of estuarine ecosystem. Ecological Modelling 316: 155–167. https://doi.org/10.1016/j.ecolmodel.2015.08.010.

    Article  CAS  Google Scholar 

  • Ramón, M. 2003. Population dynamics and secondary production of the cockle Cerastoderma edule (L.) in a backbarrier tidal flat in the Wadden Sea. Scientia Marina 67:429–443. https://doi.org/10.3989/scimar.2003.67n4429.

  • Reiss, H., S. Birchenough, A. Borja, L. Buhl-Mortensen, J. Craeymeersch, J. Dannheim, A. Darr, I. Galparsoro, M. Gogina, H. Neumann, J. Populus, A.M. Rengstorf, M. Valle, G. van Hoey, M.L. Zettler, and S. Degraer. 2014. Benthos distribution modelling and its relevance for marine ecosystem management. ICES Journal of Marine Science 72: 297–315. https://doi.org/10.1093/icesjms/fsu107.

    Article  Google Scholar 

  • Rullens, V., F. Stephenson, A.M. Lohrer, M. Townsend, and C.A. Pilditch. 2021. Combined species occurrence and density predictions to improve marine spatial management. Ocean Coast Manage 209: 105697. https://doi.org/10.1016/j.ocecoaman.2021.105697.

    Article  Google Scholar 

  • Saito, T., and M. Rehmsmeier. 2017. Precrec: Fast and accurate precision–recall and ROC curve calculations in R. Bioinformatics 33: 145–147. https://doi.org/10.1093/bioinformatics/btw570.

    Article  CAS  Google Scholar 

  • Santini, L., A. Benítez-López, L. Maiorano, M. Čengić, and M.A.J. Huijbregts. 2021. Assessing the reliability of species distribution projections in climate change research. Diversity and Distributions 27: 1035–1050. https://doi.org/10.1111/ddi.13252.

    Article  Google Scholar 

  • Sequeira, A.M.M., P.J. Bouchet, K.L. Yates, K. Mengersen, and M.J. Caley. 2018. Transferring biodiversity models for conservation: Opportunities and challenges. Methods in Ecology and Evolution 9: 1250–1264. https://doi.org/10.1111/2041-210x.12998.

    Article  Google Scholar 

  • Singer, A., G. Millat, J. Staneva, and I. Kröncke. 2017. Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios. Estuarine, Coastal and Shelf Science 188: 99–108. https://doi.org/10.1016/j.ecss.2017.02.003.

    Article  Google Scholar 

  • Soissons, L.M., T.G. da Conceiçâo, J. Bastiaan, J. van Dalen, T. Ysebaert, P.M.J. Herman, F. Cozzoli, and T.J. Bouma. 2019. Sandification vs. muddification of tidal flats by benthic organisms: a flume study. Estuarine, Coastal and Shelf Science 228: 106355. https://doi.org/10.1016/j.ecss.2019.106355.

  • Stefanova, A., V. Krysanova, C. Hesse, and A.I. Lillebø. 2015. Climate change impact assessment on water inflow to a coastal lagoon: the Ria de Aveiro watershed, Portugal. Hydrological Sciences Journal 141217125340005.https://doi.org/10.1080/02626667.2014.983518.

  • Tebble, N. 1966. British bivalve seashells. A handbook for identification. Trustees of the British Museum (Natural History), London, UK.

  • Thuiller, W., B. Lafourcade, R. Engler, and M.B. Araújo. 2009. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32: 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x.

    Article  Google Scholar 

  • Tommasi, D., C.A. Stock, M.A. Alexander, X. Yang, A. Rosati, and G.A. Vecchi. 2017. Multi-annual climate predictions for fisheries: An assessment of skill of sea surface temperature forecasts for large marine ecosystems. Frontiers Mar Sci 4: 201. https://doi.org/10.3389/fmars.2017.00201.

    Article  Google Scholar 

  • Urban, M.C., G. Bocedi, A.P. Hendry, J.-B. Mihoub, G. Pe’er, A. Singer, J.R. Bridle, L.G. Crozier, L.D. Meester, W. Godsoe, A. Gonzalez, J.J. Hellmann, R.D. Holt, A. Huth, K. Johst, C.B. Krug, P.W. Leadley, S.C.F. Palmer, J.H. Pantel, A. Schmitz, P.A. Zollner, and J.M.J. Travis. 2016. Improving the forecast for biodiversity under climate change. Science 353: 1113-+. https://doi.org/10.1126/science.aad8466.

  • Valavi, R., J. Elith, J.J. Lahoz-Monfort, and G. Guillera-Arroita. 2019. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods in Ecology and Evolution 10: 225–232. https://doi.org/10.1111/2041-210x.13107.

    Article  Google Scholar 

  • Van der Schatte Olivier, A., L. Jones, L.L. Vay, M. Christie, J. Wilson, and S.K. Malham. 2018. A global review of the ecosystem services provided by bivalve aquaculture. Rev Aquacult 12: 3–25. https://doi.org/10.1111/raq.12301.

    Article  Google Scholar 

  • Vargas, C.I.C., N. Vaz, and J.M. Dias. 2017. An evaluation of climate change effects in estuarine salinity patterns: Application to Ria de Aveiro shallow water system. Estuarine, Coastal and Shelf Science 189: 33–45. https://doi.org/10.1016/j.ecss.2017.03.001.

    Article  Google Scholar 

  • Vaz, L., M. Mateus, J. Serôdio, J.M. Dias, and N. Vaz. 2016. Primary production of the benthic microalgae in the bottom sediments of Ria de Aveiro lagoon. Journal of Coastal Research 75: 178–182. https://doi.org/10.2112/si75-36.1.

    Article  CAS  Google Scholar 

  • Vaz, N., J.M. Dias, P. Leitão, and I. Martins. 2005. Horizontal patterns of water temperature and salinity in an estuarine tidal channel: Ria de Aveiro. Ocean Dynam 55: 416–429. https://doi.org/10.1007/s10236-005-0015-4.

    Article  Google Scholar 

  • Vaz, N., J.M. Dias, and P.C. Leitão. 2009. Three-dimensional modelling of a tidal channel: The Espinheiro Channel (Portugal). Continental Shelf Research 29: 29–41. https://doi.org/10.1016/j.csr.2007.12.005.

    Article  Google Scholar 

  • Vaz, N., L. Vaz, J. Serôdio, and J.M. Dias. 2019. A modeling study of light extinction due to cohesive sediments in a shallow coastal lagoon under well mixed conditions. Science of the Total Environment 694: 133707. https://doi.org/10.1016/j.scitotenv.2019.133707.

    Article  CAS  Google Scholar 

  • Verdelhos, T., J.C. Marques, and P. Anastácio. 2015a. The impact of estuarine salinity changes on the bivalves Scrobicularia plana and Cerastoderma edule, illustrated by behavioral and mortality responses on a laboratory assay. Ecological Indicators 52: 96–104. https://doi.org/10.1016/j.ecolind.2014.11.022.

    Article  Google Scholar 

  • Verdelhos, T., J.C. Marques, and P. Anastácio. 2015b. Behavioral and mortality responses of the bivalves Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s potential impacts. Ecological Indicators 58: 95–103. https://doi.org/10.1016/j.ecolind.2015.05.042.

    Article  Google Scholar 

  • Yates, K.L., P.J. Bouchet, M.J. Caley, K. Mengersen, C.F. Randin, S. Parnell, A.H. Fielding, A.J. Bamford, S. Ban, A.M. Barbosa, C.F. Dormann, J. Elith, C.B. Embling, G.N. Ervin, R. Fisher, S. Gould, R.F. Graf, E.J. Gregr, P.N. Halpin, R.K. Heikkinen, S. Heinänen, A.R. Jones, P.K. Krishnakumar, V. Lauria, H. Lozano-Montes, L. Mannocci, C. Mellin, M.B. Mesgaran, E. Moreno-Amat, S. Mormede, E. Novaczek, S. Oppel, G.O. Crespo, A.T. Peterson, G. Rapacciuolo, J.J. Roberts, R.E. Ross, K.L. Scales, D. Schoeman, P. Snelgrove, G. Sundblad, W. Thuiller, L.G. Torres, H. Verbruggen, L. Wang, S. Wenger, M.J. Whittingham, Y. Zharikov, D. Zurell, and A.M.M. Sequeira. 2018. Outstanding challenges in the transferability of ecological models. Trends in Ecology & Evolution 33: 790–802. https://doi.org/10.1016/j.tree.2018.08.001.

    Article  Google Scholar 

  • Zhou, Z., T.J. Bouma, G.S. Fivash, T. Ysebaert, and IJzerloo, L. van, Dalen, J. van, Dam, B. van, Walles, B. 2022. Thermal stress affects bioturbators’ burrowing behavior: A mesocosm experiment on common cockles (Cerastoderma edule). Science of the Total Environment 824: 153621. https://doi.org/10.1016/j.scitotenv.2022.153621.

Download references

Acknowledgements

The authors are grateful to Anthony Peter Moreira for correcting the English and to anonymous reviewers for pertinent suggestions to improve the manuscript.

Funding

This work was performed in the scope of the project COACH (cooperative approach applied to conservation and management of cockles), supported by the Ocean Conservation FUND, from Oceanário de Lisboa and Oceano Azul Foundation. Thanks are also due to FCT/MCTES for the financial support to CESAM (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020) through national funds. Luísa Magalhães benefited from a research position funded by FEDER through COMPETE2020-POCI and by national funds through FCT/MCTES (POCI-01–0145-FEDER-028425) under the project BISPECIAl (PTDC/CTA-AMB/28425/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio L. Matos.

Additional information

Communicated by Mark J. Brush

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 839 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matos, F.L., Vaz, N., Picado, A. et al. Assessment of Habitat Suitability for Common Cockles in the Ria the Aveiro Lagoon Under Average and Projected Environmental Conditions. Estuaries and Coasts 46, 512–525 (2023). https://doi.org/10.1007/s12237-022-01136-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-022-01136-z

Keywords

Navigation