Skip to main content

Advertisement

Log in

Comparing the Biogeochemistry of Storm Surge Sediments and Pre-storm Soils in Coastal Wetlands: Hurricane Irma and the Florida Everglades

  • Special Issue: Impact of 2017 Hurricanes
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Hurricanes can alter the rates and trajectories of biogeochemical cycling in coastal wetlands. Defoliation and vegetation death can lead to increased soil temperatures, and storm surge can variously cause erosion or deposition of sediment leading to changes in soil bulk density, nutrient composition, and redox characteristics. The objective of this study was to compare the biogeochemistry of pre-storm soils and a carbonate-rich sediment layer deposited by Hurricane Irma that made landfall in southwest Florida as a category 3 storm in September 2017. We predicted that indicators of biogeochemical activity (e.g., potential soil respiration rates, microbial biomass (MBC), and extracellular enzyme activities) would be lower in the storm sediment layer because of its lower organic matter content relative to pre-storm soils. There were few differences between the storm sediment and pre-storm soils at two of the sites closest to the Gulf of Mexico (GOM). This suggests that marine deposition regularly influences soil formation at these sites and is not something that occurs only during hurricanes. At a third site, 8 km from the GOM, the pre-storm soils had much greater concentrations of organic matter, total N, total P, MBC, and higher potential respiration rates than the storm layer. At this same site, CO2 fluxes from intact soil cores containing a layer of storm sediment were 30% lower than those without it. This suggests that sediment deposition from storm surge has the potential to preserve historically sequestered carbon in coastal soils through reduced respiratory losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allison, Steven D., and Peter M. Vitousek. 2005. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology and Biochemistry 37 (5): 937–944. https://doi.org/10.1016/j.soilbio.2004.09.014.

    Article  CAS  Google Scholar 

  • Allison, Steven D., Michael N. Weintraub, Tracy B. Gartner, and Mark P. Waldrop. 2011. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function. In Soil enzymology, ed. G. Shukla and A. Varma, 275–285. Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-14225-3.

    Chapter  Google Scholar 

  • Andersen, J.M. 1976. An ignition method for determination of total phosphorus in lake sediments. Water Research 10: 329–331.

    Article  CAS  Google Scholar 

  • Arkema, Katie K., Greg Guannel, Gregory Verutes, Spencer A. Wood, Anne Guerry, Mary Ruckelshaus, Peter Kareiva, Martin Lacayo, and Jessica M. Silver. 2013. Coastal habitats shield people and property from sea-level rise and storms. Nature Climate Change 3 (10): 913–918. https://doi.org/10.1038/NCLIMATE1944.

    Article  Google Scholar 

  • Barr, Jordan G., Vic Engel, Thomas J. Smith, and José D. Fuentes. 2012. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agricultural and Forest Meteorology 153. Elsevier B.V.: 54–66. https://doi.org/10.1016/j.agrformet.2011.07.022.

    Article  Google Scholar 

  • Bell, Colin W., Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, and Matthew D. Wallenstein. 2013. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. Journal of Visualized Experiments (81). https://doi.org/10.3791/50961.

  • Bouillon, Steven, Alberto V. Borges, Edward Castañeda-Moya, Karen Diele, Thorsten Dittmar, Norman C. Duke, Erik Kristensen, Shing Y. Lee, Cyril Marchand, Jack J. Middelburg, Victor H. Rivera-Monroy, Thomas J. Smith III, and Robert R. Twilley. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22 (2): 1–12. https://doi.org/10.1029/2007GB003052.

    Article  CAS  Google Scholar 

  • Breithaupt, Joshua L., Joseph M. Smoak, Thomas J. Smith, and Christian J. Sanders. 2014. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research, Biogeosciences 119 (10): 2032–2048. https://doi.org/10.1002/2014JG002715.

    Article  CAS  Google Scholar 

  • Breithaupt, J.L., J.M. Smoak, V.H. Rivera-Monroy, E. Castañeda-Moya, R.P. Moyer, M. Simard, and C.J. Sanders. 2017. Partitioning the relative contributions of organic matter and mineral sediment to accretion rates in carbonate platform mangrove soils. Marine Geology 390: 170–180. https://doi.org/10.1016/j.margeo.2017.07.002.

    Article  CAS  Google Scholar 

  • Breithaupt, J.L., Smoak, J.M., Sanders, C.J. and Troxler, T.G. 2019. Spatial variability of organic carbon, CaCO3 and nutrient burial rates spanning a mangrove productivity gradient in the coastal Everglades. Ecosystems 22 (4):844–858.

  • Cahoon, Donald R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts 29 (6): 889–898. https://doi.org/10.1007/BF02798648.

    Article  Google Scholar 

  • Cahoon, Donald R., Philippe Hensel, John Rybczyk, Karen L. McKee, C. Edward Proffitt, and Brian C. Perez. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91 (6): 1093–1105. https://doi.org/10.1046/j.1365-2745.2003.00841.x.

    Article  Google Scholar 

  • Cangialosi, J.P., Latto, A.S and Berg R. 2018. National Hurricane Center Tropical Cyclone Report: Hurricane Irma. National Oceanic and Atmospheric Administration: May, 30.

  • Castañeda-Moya E, Rivera-Monroy V. 2018. Abiotic monitoring of physical characteristics in porewaters and surface waters of mangrove forests from the Shark River Slough and Taylor Slough, Everglades National Park (FCE), South Florida from December 2000 to Present. Environmental Data Initiative. https://doi.org/10.6073/pasta/1f61bffd880b6c90d31d92f501bfe3be. Accessed March 8, 2018.

  • Castañeda-Moya, Edward, Robert R. Twilley, Victor H. Rivera-Monroy, Keqi Zhang, Stephen E. Davis, and Michael Ross. 2010. Sediment and nutrient deposition associated with Hurricane Wilma in mangroves of the Florida coastal everglades. Estuaries and Coasts 33 (1): 45–58. https://doi.org/10.1007/s12237-009-9242-0.

    Article  CAS  Google Scholar 

  • Chrost, R.J., and H.J. Krambeck. 1986. Fluorescence correction for measurements of enzyme-activity in natural-waters using methylumbelliferyl substrates. Archive Fur Hydrobiologie 106: 79–90.

    CAS  Google Scholar 

  • Croft, Alex L., Lynn A. Leonard, Troy D. Alphin, and Lawrence B. Cahoon. 2006. The effects of thin layer sand renourishment on tidal marsh processes: Masonboro Island, North Carolina. Estuaries and Coasts 29 (5): 737–750.

    Article  CAS  Google Scholar 

  • Dalal, R.C. 1998. Soil microbial biomass—what do the numbers really mean? Australian Journal of Experimental Agriculture 38 (7): 649–665.

    Article  Google Scholar 

  • Danielson TM, Rivera-Monroy VH, Castañeda-Moya E, Briceño H, Travieso R, Marx BD, Gaiser E, Farfán LM. 2017. Assessment of Everglades mangrove forest resilience: Implications for above-ground net primary productivity and carbon dynamics. For Ecol Manage 404:115–125. https://doi.org/10.1016/j.foreco.2017.08.009

  • Dean, Walter E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Research 44: 242–248. https://doi.org/10.1306/74D729D2-2B21-11D7-8648000102C1865D.

    Article  CAS  Google Scholar 

  • DeLaune, Ronald D., and K. Ramesh Reddy. 2008. Biogeochemistry of wetlands: science and applications. CRC press.

  • Donato, Daniel C., J. Boone Kauffman, Daniel Murdiyarso, Sofyan Kurnianto, Melanie Stidham, and Markku Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4. Nature Publishing Group: 293–297. https://doi.org/10.1038/ngeo1123.

    Article  CAS  Google Scholar 

  • Doyle, T.W., T.J. Smith, and M.B. Robblee. 1995. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA. Journal of Coastal Research, SI 21: 159–168.

    Google Scholar 

  • Green, Mark A., and Robert C. Aller. 1998. Seasonal patterns of carbonate diagenesis in nearshore terrigenous muds: relation to spring phytoplankton bloom and temperature. Journal of Marine Research 56 (5): 1097–1123.

    Article  CAS  Google Scholar 

  • Harris, David, William R. Horwa, and Chris Van Kessel. 2001. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Science Society of America Journal 65 (6): 1853–1856.

    Article  CAS  Google Scholar 

  • Hoppe, Hans-Georg. 1993. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In Handbook of methods in aquatic microbial ecology, ed. Paul F. Kemp, Barry F. Sherr, Evelyn B. Sherr, and Jonathan J. Cole, 423–431. Boca Raton: CRC Press LLC.

    Google Scholar 

  • Jennerjahn, Tim, and Venugopalan Ittekkot. 2002. Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89 (1): 23–30. https://doi.org/10.1007/s00114-001-0283-x.

    Article  Google Scholar 

  • Joergensen, Rainer Georg. 1996. The fumigation-extraction method to estimate soil microbial biomass: calibration of the Kec value. Soil Biology & Biochemistry 28 (1): 25–31.

    Article  CAS  Google Scholar 

  • Kauffman JB, Cole TG. 2010. Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30:1077–1084.

  • Kauffman, J. Boone, Chris Heider, Thomas G. Cole, Kathleen A. Dwire, and Daniel C. Donato. 2011. Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31 (2): 343–352. https://doi.org/10.1007/s13157-011-0148-9.

    Article  Google Scholar 

  • Koch, A.L. 1985. The macroeconomics of bacterial growth. In Bacteria in their natural environments, ed. M. Fletcher and G.D. Floodgate, 1–42. London: Academic Press.

    Google Scholar 

  • Krauss, Ken W., Thomas W. Doyle, Terry J. Doyle, Christopher M. Swarzenski, Andrew S. From, Richard H. Day, and William H. Conner. 2009. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29 (1): 142–149.

    Article  Google Scholar 

  • Long, Jordan, Chandra Giri, Jurgenne Primavera, and Mandar Trivedi. 2016. Damage and recovery assessment of the Philippines’ mangroves following Super Typhoon Haiyan. Marine Pollution Bulletin 109. Elsevier Ltd: 734–743. https://doi.org/10.1016/j.marpolbul.2016.06.080.

    Article  CAS  Google Scholar 

  • Macreadie, Peter I., Oscar Serrano, Damien T. Maher, Carlos M. Duarte, and John Beardall. 2017. Addressing calcium carbonate cycling in blue carbon accounting. Limnology and Oceanography Letters 2 (6): 195–201. https://doi.org/10.1002/lol2.10052.

    Article  Google Scholar 

  • Maher, Damien T., Mitchell Call, Isaac R. Santos, and Christian J. Sanders. 2018. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biology Letters 14 (7): 20180200. https://doi.org/10.1098/rsbl.2018.0200.

    Article  CAS  Google Scholar 

  • Makoi, Joachim H.J.R., and Patrick A. Ndakidemi. 2008. Selected soil enzymes: examples of their potential roles in the ecosystem. African Journal of Biotechnology 7: 181–191.

    CAS  Google Scholar 

  • Mccoy, Earl D., Henry R. Mushinsky, Derek Johnson, and Walter E. Meshaka. 1996. Mangrove damage caused by Hurricane Andrew on the southwestern coast of Florida. Bulletin of Marine Science 59: 1–8.

    Google Scholar 

  • Mckee, Karen L. 2001. Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests ? Journal of Ecology 89 (5): 876–887.

    Article  Google Scholar 

  • NOAA National Ocean Service. 2018. Mean sea level trend Key West Florida. Available from http://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=8724580. Accessed 29 Oct 2018

  • Radabaugh, Kara R., Ryan P. Moyer, Amanda R. Chappel, Christina E. Powell, Ioana Bociu, Barbara C. Clark, and Joseph M. Smoak. 2018. Coastal blue carbon assessment of mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA. Estuaries and Coasts 41: 1496–1510. https://doi.org/10.1007/s12237-017-0362-7.

    Article  CAS  Google Scholar 

  • Radabaugh, K. R., Moyer, R. P., Chappel, A. R., Dontis, E. E., Russo, C. E., Joyse, K. M., Bownik, M. W., Goeckner, A. H. and Khan, N. S. 2019. Mangrove damage, delayed mortality, and early recovery following Hurricane Irma at two landfall sites in Southwest Florida, USA. Estuaries and Coasts. https://doi.org/10.1007/s12237-019-00564-8.

  • Roth, Linda C. 1992. Hurricanes and mangrove regeneration: effects of Hurricane Joan, October 1988, on the vegetation of Isla del Venado, Bluefields, Nicaragua. Biotropica 24 (3): 375–384.

    Article  Google Scholar 

  • Saderne, Vincent, Michael Cusack, Hanan Almahasheer, Oscar Serrano, Pere Masque, Ariane Arias-Ortiz, Periyadan Kadinjappalli Krishnakumar, Lotfi Rabaoui, Mohammad Ali Qurban, and Carlos Manuel Duarte. 2018. Accumulation of carbonates contributes to coastal vegetated ecosystems keeping pace with sea level rise in an arid region (Arabian Peninsula). Journal of Geophysical Research, Biogeosciences 123. https://doi.org/10.1029/2017JG004288.

  • Salmo, Severino G., Catherine E. Lovelock, and Norman C. Duke. 2014. Assessment of vegetation and soil conditions in restored mangroves interrupted by severe tropical typhoon ‘Chan-hom’ in the Philippines. Hydrobiologia 733 (1): 85–102.

    Article  Google Scholar 

  • Sherman, Ruth E., Timothy J. Fahey, and Pedro Martinez. 2001. Hurricane impacts on a mangrove forest in the Dominican Republic: damage patterns and early recovery. Biotropica 33 (3): 393–408.

    Article  Google Scholar 

  • Smith, Thomas J., Michael B. Robblee, Harold R. Wanless, and Thomas W. Doyle. 1994. Mangroves, hurricanes and lightning strikes. BioScience 44 (4): 256–262. https://doi.org/10.2307/1312230.

    Article  Google Scholar 

  • Smith, Thomas J., Gordon H. Anderson, Karen Balentine, Ginger Tiling, Greg A. Ward, and Kevin R.T. Whelan. 2009. Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29 (1): 24–34. https://doi.org/10.1672/08-40.1.

    Article  Google Scholar 

  • Smoak, J.M., J.L. Breithaupt, T.J. Smith III, and C.J. Sanders. 2013. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena 104: 58–66. https://doi.org/10.1016/j.catena.2012.10.009.

    Article  CAS  Google Scholar 

  • Spackman, W., C.P. Dolsen, and W. Riegel. 1966. Phytogenic organic sediments and sedimentary environments in the Everglades-mangrove complex. Palaeontographica 117: 135–152.

    Google Scholar 

  • Troxler, T.G., E. Gaiser, J. Barr, J.D. Fuentes, R. Jaffe, D.L. Childers, L. Collado-Vides, et al. 2013. Integrated carbon budget models for the Everglades terrestrial-coastal-oceanic gradient: current status and needs for inter-site comparisons. Oceanography 26 (3): 98–107.

    Article  Google Scholar 

  • USEPA. 1993. Methods for the determination of inorganic substances in environmental samples, EPA/600/R-93/100. Washington: U.S. Environmental Protection Agency.

    Google Scholar 

  • Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry 19 (6): 703–707. https://doi.org/10.1016/0038-0717(87)90052-6.

    Article  CAS  Google Scholar 

  • Whelan, Kevin R.T., Thomas J. Smith, Gordon H. Anderson, and Michelle L. Ouellette. 2009. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove Forest. Wetlands 29 (1): 16–23. https://doi.org/10.1672/08-125.1.

    Article  Google Scholar 

  • Zhang, Keqi, Huiqing Liu, Yuepeng Li, Hongzhou Xu, Jian Shen, Jamie Rhome, and Thomas J. Smith. 2012. The role of mangroves in attenuating storm surges. Estuarine, Coastal and Shelf Science 102–103. Elsevier Ltd: 11–23. https://doi.org/10.1016/j.ecss.2012.02.021.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Rafael Travieso for field support.

Funding

This material is based upon work supported by the National Science Foundation under DEB RAPID Grant No. 1801244 and supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Grant No. DEB-1237517. J. Breithaupt is grateful for P3 post-doctoral funding from the University of Central Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Breithaupt.

Additional information

Communicated by Marco Bartoli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breithaupt, J.L., Hurst, N., Steinmuller, H.E. et al. Comparing the Biogeochemistry of Storm Surge Sediments and Pre-storm Soils in Coastal Wetlands: Hurricane Irma and the Florida Everglades. Estuaries and Coasts 43, 1090–1103 (2020). https://doi.org/10.1007/s12237-019-00607-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00607-0

Keywords

Navigation