Skip to main content
Log in

The Effects of Spatial Scale on Assigning Nursery Habitats in Atlantic Goliath Groupers (Epinephelus itajara) Using Non-lethal Analyses of Fin Rays

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We evaluated Atlantic Goliath Groupers, Epinephelus itajara, in their nursery habitats via microchemical analyses of fin rays. Juveniles were sampled from known nursery habitats off southwest Florida, and adults were primarily sampled from a spawning aggregation off southeast, Florida. We collected fin rays using a non-lethal technique that is minimally invasive with no known negative effects on growth or survival. Trace metal constituents in the fin rays were quantified with an inductively coupled plasma mass spectrometer via laser ablation (LA-ICP-MS). Two spatial scales were quantified to test the limitations of grouping individuals based on elemental compositions. On a small spatial scale (i.e., 100s of m), individuals were correctly classified within individual watersheds 64% of the time. On a larger spatial scale (i.e., 10s–100s of km), juveniles were classified with 100% accuracy. Trace metals in adults were analyzed by back-tracking across fin ray annuli to a year in which our previous studies have shown these adults occupied their juvenile habitats (i.e., 2006). These fish were grouped using a measure of dissimilarity and then analyzed to test whether we could reclassify them into these same groupings based solely on the chemical components in their fin rays, which was done with over 84% accuracy. Although juvenile habitats of the adults could not be determined due to the lack of baseline data, classifications were driven by similar elements to those that drove the classification of juveniles, suggesting similar physiological mechanisms. The results highlight the importance of spatial scale for interpreting microchemical analyses on calcified structures in fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Li7, Na23, Mg24, P31, Ca43, Sc45, V51, Cr53, Mn55, Fe57, Co59, Ni60, Cu63, Zn64, Cu65, Ge72, Rb85, Sr88, Y89, Cd114, Sn118, Ba137, Au197, Pb208, Th232, and U238

References

  • Allen, P.J., J.A. Hobbs, J.J. Cech, J.P. Van Eenennaam, and S.I. Doroshov. 2009. Using trace elements in pectoral fin rays to assess life history movements in sturgeon: estimating age at initial seawater entry in Klamath River green sturgeon. Transactions of the American Fisheries Society 138: 240–250.

    Article  CAS  Google Scholar 

  • Anderson, M.J., and T.J. Willis. 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84: 511–525.

    Article  Google Scholar 

  • Beck, M.W., K.L. Heck, K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan, and M.R. Weinstein. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51: 633–641.

    Article  Google Scholar 

  • Beck, M.W., K.L. Heck, K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, C.G. Hays, K. Hoshino, T.J. Minello, R.J. Orth, P.F. Sheridan, and M.R. Weinstein. 2003. The role of nearshore ecosystems as fish and shellfish nurseries. Issues in Ecology 11: 1–12.

    Google Scholar 

  • Brame, A.B., C.C. McIvor, E.B. Peebles, and D.J. Hollander. 2014. Site fidelity and condition metrics suggest sequential habitat use by juvenile common snook. Marine Ecology Progress Series 509: 255–269.

    Article  Google Scholar 

  • Breiman, L. 2001. Random forests. Machine Learning 45: 5–32.

    Article  Google Scholar 

  • Browder, J. A., A. Dragovich, J. Tashiro, E. Coleman-Duffie, C. Foltz, and J. Zweifel. 1986. A comparison of biological abundances in three adjacent bay systems downstream from the Golden Gate Estates canal system. National Oceanic and Atmospheric Administration.

  • Clarke, A.D., K.H. Telmer, and J.M. Shrimpton. 2007. Elemental analysis of otoliths, fin rays and scales: a comparison of bony structures to provide population and life-history information for the arctic grayling (Thymallus arcticus). Ecology of Freshwater Fish 16: 354–361.

  • Clarke, K.R., P.J. Somerfield, and R.N. Gorley. 2008. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology 366: 56–69.

    Article  Google Scholar 

  • Craig, M.T., R.T. Graham, R.A. Torres, J.R. Hyde, M.O. Freitas, B.P. Ferreira, M. Hostim-Silva, L.C. Gerhardinger, A.A. Bertoncini, and D.R. Robertson. 2009. How many species of goliath grouper are there? Cryptic genetic divergence in a threatened marine fish and the resurrection of a geopolitical species. Endangered Species Research 7: 167–174.

    Article  Google Scholar 

  • Cutler, D.R., T.C. Edwards, K.H. Beard, A. Cutler, and K.T. Hess. 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.

    Article  Google Scholar 

  • Dahlgren, C.P., G.T. Kellison, A.J. Adams, B.M. Gillanders, M.S. Kendall, C.A. Layman, J.A. Ley, I. Nagelkerken, and J.E. Serafy. 2006. Marine nurseries and effective juvenile habitats: concepts and applications. Marine Ecology Progress Series 312: 291–295.

    Article  Google Scholar 

  • Duarte, C.A., E. Giarratano, and M.N. Gil. 2012. Trace metal content in sediments and autochthonous intertidal organisms from two adjacent bays near Ushuaia, Beagle Channel (Argentina). Marine Environmental Research 79: 55–62.

    Article  CAS  Google Scholar 

  • Dufrene, M., and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Eklund, A. M., and J. Schull. 2001. A stepwise approach to investigating the movement patterns and habitat utilization of goliath grouper, Epinephelus itajara, using conventional tagging, acoustic telemetry and satellite tracking. Pages 189–216 in J. L. Sibert J.R. and Nielsen, editor. Electronic tagging and tracking marine fisheries. Kluwer Academic Publishers, Netherlands.

  • Elsdon, T.S., and B.M. Gillanders. 2003. Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Reviews in Fish Biology and Fisheries 13: 219–235.

    Article  Google Scholar 

  • Fourqurean, J.W., J.N. Boyer, M.J. Durako, L.N. Hefty, and B.J. Peterson. 2003. Forecasting responses of seagrass distributions to changing water quality using monitoring data. Ecological Applications 13: 474–489.

    Article  Google Scholar 

  • Gao, Y., L. Lesven, D. Gillan, K. Sabbe, G. Billon, S. De Galan, M. Elskens, W. Baeyens, and M. Leermakers. 2009. Geochemical behavior of trace elemetns in sub-tidal marine sediments of the Belgian coast. Marine Chemistry 117: 88–96.

    Article  CAS  Google Scholar 

  • Gauldie, R.W., and A. Nathan. 1977. Iron content of otoliths of Tarakihi (Teleostei-Cheilodactylidae). New Zealand Journal of Marine and Freshwater Research 11: 179–191.

    Article  CAS  Google Scholar 

  • Gillanders, B.M., and M.J. Kingsford. 2000. Elemental fingerprints of otoliths of fish may distinguish estuarine ‘nursery’ habitats. Marine Ecology Progress Series 201: 273–286.

    Article  CAS  Google Scholar 

  • Gillanders, B.M., K.W. Able, J.A. Brown, D.B. Eggleston, and P.F. Sheridan. 2003. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Marine Ecology Progress Series 247: 281–295.

    Article  Google Scholar 

  • Hobbs, J.A., L.S. Lewis, N. Ikemiyagi, T. Sommer, and R.D. Baxter. 2010. The use of otofith strontium isotopes (Sr-87/Sr-86) to identify nursery habitat for a threatened estuarine fish. Environmental Biology of Fishes 89: 557–569.

    Article  Google Scholar 

  • Jaric, I., M. Lenhardt, J. Pallon, M. Elfman, A. Kalauzi, R. Suciu, G. Cvijanovic, and T. Ebenhard. 2012. Insight into Danube sturgeon life history: trace element assessment in pectoral fin rays. Environmental Biology of Fishes 94: 501–501.

    Article  Google Scholar 

  • Jones, D.L. 2014. The Fathom Toolbox for Matlab: multivariate ecological and oceanographic data analysis. St Petersburg: College of Marine Science, University of South Florida.

    Google Scholar 

  • Kerr, L. A., and S. E. Campana. 2014. Chemical composition of fish hard parts as a natural marker of fish stocks. In S. X. Cadrin, L. A. Kerr, and S. Mariani, editors. Stock identification methods (Second Edition): applications in fishery science. Academic Press, London, U. K.

  • Koenig, C.C., F.C. Coleman, A.M. Eklund, J. Schull, and J. Ueland. 2007. Mangroves as essential nursery habitat for goliath grouper (Epinephelus itajara). Bulletin of Marine Science 80: 567–585.

    Google Scholar 

  • Koenig, C.C., F.C. Coleman, and K. Kingon. 2011. Pattern of recovery of the goliath grouper, Epinephelus itajara, population in the Southeastern United States. Bulletin of Marine Science 87: 891–911.

    Article  Google Scholar 

  • Koenig, C., D. J. Murie, D. C. Parkyn, B. Ellis, F. Coleman, O. E. Tzadik, C. D. Stallings, and C. Malinowski. 2016a. Regional age structure, reproductive biology and trophic patterns of adult Atlantic Goliath Grouper in Florida. Marfin Final Report, Project NA11NMF4330123, Florida State University 162 pp

  • Koenig, C.C., L.S. Bueno, F.C. Coleman, J.A. Cusick, R.D. Ellis, K. Kingon, J.V. Locascio, C. Malinowski, D.J. Murie, and C.D. Stallings. 2016b. Diel, lunar, and seasonal spawning patterns of the Atlantic goliath grouper, Epinephelus itajara, off Florida, United States. Bulletin of Marine Science 92: 1–16.

    Article  Google Scholar 

  • Lara, M.R., J. Schull, D.L. Jones, and R. Allman. 2009. Early life history stages of goliath grouper Epinephelus itajara (Pisces: Epinephelidae) from Ten Thousand Islands, Florida. Endangered Species Research 7: 221–228.

    Article  Google Scholar 

  • Legendre, P., and L. Legendre. 2012. Numerical ecology. 3rd English ed. Amsterdam: Elsevier Science BV.

    Google Scholar 

  • Li, F., and Y.Q. Feng. 2003. Determination of scandium in aluminum alloy by ICP-AES. Spectroscopy and Spectral Analysis 23: 968–971.

    CAS  Google Scholar 

  • Mercier, L., A.M. Darnaude, O. Bruguier, R.P. Vasconcelos, H.N. Cabral, M.J. Costa, M. Lara, D.L. Jones, and D. Mouillot. 2011. Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecological Applications 21: 1352–1364.

    Article  Google Scholar 

  • Morrison, D.G. 1969. On the interpretation of discriminant analysis. Journal of Marketing Research 6: 156–163.

    Article  Google Scholar 

  • Murie, D.J., D.C. Parkyn, C.C. Koenig, F.C. Coleman, J. Schull, and S. Frias-Torres. 2009. Evaluation of finrays as a non-lethal ageing method for protected goliath grouper Epinephelus itajara. Endangered Species Research 7: 213–220.

    Article  Google Scholar 

  • Naeem, H. T., K. S. Mohammed, K. R. Ahmad, and A. Rahmat. 2014. The influence of nickel and tin additives on the microstructural and mechanical properties of Al-Zn-Mg-Cu Alloys. Advances in Materials Science and Engineering.

  • Pine, W.E., K.H. Pollock, J.E. Hightower, T.J. Kwak, and J.A. Rice. 2003. A review of tagging methods for estimating fish population size and componenets of mortality. Fisheries 28: 10–23.

    Article  Google Scholar 

  • Pusack, T.J., and R.T. Graham. 2009. Threatened fishes of the world: Epinephelus itajara (Lichtenstein, 1822) (Epinephelidae, formerly Serranidae). Environmental Biology of Fishes 86: 293–294.

    Article  Google Scholar 

  • Shanmugam, A., C. Palpandi, and K. Kesavan. 2007. Bioaccumulation of some trace metals (Mg, Fe, Zn, Cu) from Beggar’s Bowl Cymbium melo (a marine gastropod). Research Journal of Environmental Sciences 1: 191–195.

    Article  CAS  Google Scholar 

  • Sheaves, M., R. Baker, and R. Johnston. 2006. Marine nurseries and effective juvenile habitats: sn alternative view. Marine Ecology Progress Series 318: 303–306.

    Article  Google Scholar 

  • Stoner, A.W. 2003. What constitutes essential nursery habitat for a marine species? A case study of habitat form and function for queen conch. Marine Ecology Progress Series 257: 275–289.

    Article  Google Scholar 

  • Tzadik, O.E., E.A. Goddard, D.J. Hollander, C.C. Koenig, and C.D. Stallings. 2015. Non-lethal approach identifies variability of δ 15N values in the fin rays of Atlantic Goliath Grouper. Epinephelus itajara. Peerj 3.

  • Tzadik, O. E., E. B. Peebles, and C. D. Stallings. 2017. Life history studies via non-lethal sampling: using microchemical constituents in fin rays as chronological recorders. Journal of Fish Biology 90: 611–625.

  • Walther, B.D., and S.R. Thorrold. 2006. Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series 311: 125–130.

    Article  CAS  Google Scholar 

  • Wopenka, B., and J.D. Pasteris. 2005. A minerological perspective on the apatite in bone. Materials Science and Engineering C 25: 131–143.

    Article  Google Scholar 

  • Yan, A., L. Chen, H.S. Liu, and X.Q. Li. 2013. Fatigue crack propagation behaviour and corrosion resistance of Al-Zn-Mg-Cu-Ti(Sn) alloys. Materials Science and Technology 29: 319–325.

    Article  CAS  Google Scholar 

  • Yebra, D.M., S. Kil, and K. Dam-Johansen. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings 50: 75–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the US National Oceanic and Atmospheric Administration through a MARFIN award to C.C. Koenig and C.D. Stallings (NA11NMF4330123) and a Marine Resource Assessment Fellowship to the senior author (NA10NMF4550468). We collected samples under the auspices of the University of South Florida Institutional Animal Care and Use Committee (Protocol W 4193) with permits from the Florida Fish and Wildlife Commission (SAL-12-1244A-SRP) and the National Oceanic and Atmospheric Administration (F/SER24:PH). Aging of adult fish was greatly facilitated by the Murie Lab at the University of Florida, specifically D. Murie. We thank S. Murawski for conceptual advice, J. Kilborn for analytical advice, and J. Gloton, J. Curtis, K. Wall, P. Schwing, T. Snow, D. Chacin, K. Radabaugh, R. Rodriguez, K. Tzadik, S. Grasty, K. Lizza, J. Karen, J. Murray, M. Meyers, F. Newton, and C. Malinowski for field support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orian E. Tzadik.

Additional information

Communicated by Lawrence P. Rozas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzadik, O.E., Jones, D.L., Peebles, E.B. et al. The Effects of Spatial Scale on Assigning Nursery Habitats in Atlantic Goliath Groupers (Epinephelus itajara) Using Non-lethal Analyses of Fin Rays. Estuaries and Coasts 40, 1785–1794 (2017). https://doi.org/10.1007/s12237-017-0244-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0244-z

Keywords

Navigation