Skip to main content

Advertisement

Log in

Tidal Freshwater Marshes Harbor Phylogenetically Unique Clades of Sulfate Reducers That Are Resistant to Climate-Change-Induced Salinity Intrusion

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Rates of sea level rise associated with climate change are predicted to increase in the future, potentially altering ecosystems at all ecological levels. Sea level rise can increase the extent of brackish water intrusion into freshwater ecosystems, which in turn can affect the structure and function of resident microbial communities. In this study, we performed a year-long mesocosm experiment using intact tidal freshwater marsh sediment cores to examine the effect of a 5-part per thousand (ppt) salinity increase on the diversity and community composition of sulfate-reducing prokaryotes. We used a clone library approach to examine the dsrA gene, which encodes an important catalytic enzyme in sulfate reduction. Our results indicate that tidal freshwater marshes contain extremely diverse communities of sulfate-reducing bacteria. Members of these communities were, on average, only 71 % similar to known cultured sulfate reducers and 81 % similar to previously sequenced environmental clones. Salinity and associated increases in sulfate availability did not significantly affect the diversity or community composition of sulfate-reducing prokaryotes. However, carbon quality and quantity, which correlated with depth, were found to be the strongest drivers of sulfate-reducing community structure. Our study demonstrates that the sulfate-reducing community in tidal freshwater marsh sediments appears resistant to increased salinity in the face of sea level rise. Additionally, the microorganisms that comprise this sulfate-reducing community appear to be unique to tidal freshwater marsh sediments and may represent novel lineages of previously undescribed sulfate reducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert, D.B., and C.S. Martens. 1997. Determination of low-molecular-weight organic acid concentrations in seawater and pore-water samples via HPLC. Marine Chemistry 56: 27–37.

    Article  CAS  Google Scholar 

  • Bahr, M., B.C. Crump, V. Klepac-Ceraj, A. Teske, M.L. Sogin, and J.E. Hobbie. 2005. Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environmental Microbiology 7: 1175–1185.

    Article  CAS  Google Scholar 

  • Bak, F., and N. Pfennig. 1991. Microbial sulfate reduction in littoral sediment of Lake Constance. FEMS Microbiology Letters 85: 31–42.

    Article  CAS  Google Scholar 

  • Barbier, E.B., E.W. Koch, B.R. Silliman, S.D. Hacker, E. Wolanski, J. Primavera, E.F. Granek, S. Polasky, S. Aswant, L.A. Cramer, D.M. Stoms, C.J. Kennedy, D. Bael, C.V. Kappel, G.M.E. Perillo, and D.J. Reed. 2008. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319: 321–323.

    Article  CAS  Google Scholar 

  • Bertness, M.D., and A.M. Ellison. 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs 57: 129–147.

    Article  Google Scholar 

  • Blümel, M., J. Süling, and J.F. Imhoff. 2007. Depth-specific distribution of Bacteroidetes in the oligotrophic Eastern Mediterranean Sea. Aquatic Microbial Ecology 46: 209–224.

    Article  Google Scholar 

  • Canavan, R.W., C.P. Slomp, P. Jourabchi, P. Van Cappelen, A.M. Laverman, and G.A. van den Berg. 2006. Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization. Geochimica et Cosmochimica Acta 70: 2836–2855.

    Article  CAS  Google Scholar 

  • Capone, D.G., and R.P. Kiene. 1988. Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism. Limnology and Oceanography 334: 725–749.

    Article  Google Scholar 

  • Castro, H., K.R. Reddy, and A. Ogram. 2002. Composition and function of sulfate-reducing prokaryotes in eutrophic and pristine areas of the Florida Everglades. Applied and Environmental Microbiology 68: 6129–6137.

    Article  CAS  Google Scholar 

  • Church, J.A., and N.J. White. 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters 33, L01602.

    Article  Google Scholar 

  • Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454–458.

    Article  CAS  Google Scholar 

  • Cottrell, M.T., and S.C. Cary. 1999. Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Applied and Environmental Microbiology 65: 1127–1132.

    CAS  Google Scholar 

  • Craft, C. 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes. Limnology and Oceanography 52: 1220–1230.

    Article  CAS  Google Scholar 

  • Craft, C., J. Clough, J. Ehman, S. Joye, R. Park, S. Pennings, H. Guo, and M. Machmuller. 2008. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 72: 73–78.

    Google Scholar 

  • Crain, C.M., B.R. Silliman, S.L. Bertness, and M.D. Bertness. 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85: 2539–2549.

    Article  Google Scholar 

  • Crump, B.C., C.S. Hopkinson, M.L. Sogin, and J.E. Hobbie. 2004. Microbial biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time. Applied and Environmental Microbiology 70: 1494–1505.

    Article  CAS  Google Scholar 

  • Dhillon, A., A. Teske, J. Dillon, D.A. Stahl, and M.L. Sogin. 2003. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Applied and Environmental Microbiology 69: 2765–2772.

    Article  CAS  Google Scholar 

  • Edgar, R.C., B.J. Haas, J.C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194–2200.

    Article  CAS  Google Scholar 

  • Edmonds, J.W., N.B. Weston, S.B. Joye, X. Mou, and M.A. Moran. 2009. Microbial community response to seawater amendment in low-salinity tidal sediments. Microbial Ecology 58: 558–568.

    Article  Google Scholar 

  • Fan, L.F., S.L. Tang, C.P. Chen, and H. Hsieh. 2012. Diversity and composition of sulfate-and sulfite-reducing prokaryotes as affected by marine-freshwater gradient and sulfate availability. Microbial Ecology 63: 224–237.

    Article  Google Scholar 

  • Fishbain, S., J.G. Dillon, H.L. Gough, and D.A. Stahl. 2003. Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway. Applied and Environmental Microbiology 69: 3663–3667.

    Article  CAS  Google Scholar 

  • Fortunato, C.S., L. Herfort, P. Zuber, A.M. Baptista, and B.C. Crump. 2012. Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. The ISME Journal 63: 554–563.

    Article  Google Scholar 

  • Frank, K.L., D.R. Rogers, H.C. Olins, C. Vidoudez, and P.R. Girguis. 2013. Characterizing the distribution and rates of microbial sulfate reduction at Middle Valley hydrothermal vents. The ISME Journal 77: 1391–1401.

    Article  Google Scholar 

  • Gauci, V., E. Matthews, N. Dise, B. Walter, D. Koch, and M.A. Vile. 2004. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America 101: 12583–12587.

    Article  CAS  Google Scholar 

  • Gribsholt, B., H.T.S. Boschker, E. Struyf, M. Andersson, A. Tramper, L. De Brabandere, S. van Damme, N. Brion, P. Meire, F. Dehairs, J.J. Middelburg, and C.H.R. Heip. 2005. Nitrogen processing in a tidal freshwater marsh: a whole ecosystem 15N labeling study. Limnology and Oceanography 50: 1945–1959.

    Article  CAS  Google Scholar 

  • Hamilton, P. 1990. Modelling salinity and circulation for the Columbia River Estuary. Progress in Oceanography 25: 113–156.

    Article  Google Scholar 

  • Holmer, M., and E. Kristensen. 1994. Coexistence of sulfate reduction and methane production in an organic-rich sediment. Marine Ecology Progress Series 107: 177.

    Article  CAS  Google Scholar 

  • Imachi, H., Y. Sekiguchi, Y. Kamagata, A. Loy, Y. Qiu, P. Hugenholtz, N. Kimura, M. Wagner, A. Ohashi, and H. Harada. 2006. Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Applied and Environmental Microbiology 72: 2080–2091.

    Article  CAS  Google Scholar 

  • Ingvorsen, K., J.G. Zeikus, and T.D. Brock. 1981. Dynamics of bacterial sulfate reduction in a eutrophic lake. Applied and Environmental Microbiology 42: 1029–1036.

    CAS  Google Scholar 

  • Jørgensen, B.B. 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249: 152–154.

    Article  Google Scholar 

  • Kallmeyer, J., T.G. Ferdelman, A. Weber, H. Fossing, and B.B. Jørgensen. 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods 2: 171–180.

    Article  Google Scholar 

  • Kelley, C.A., C.S. Martens, and J.P. Chanton. 1990. Variations in sedimentary carbon remineralization rates in the White Oak River estuary, North Carolina. Limnology and Oceanography 35: 372–383.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D’Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37, L23401.

    Article  Google Scholar 

  • Klein, M., M. Friedrich, A.J. Roger, P. Hugenholtz, S. Fishbain, H. Abicht, L.L. Blackall, D.A. Stahl, and M. Wagner. 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. Journal of Bacteriology 183: 6028–6035.

    Article  CAS  Google Scholar 

  • Knowles, N. 2002. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales. Water Resources Research 38: 25–1.

    Article  Google Scholar 

  • Kuivila, K.M., J.W. Murray, and A.H. Devol. 1990. Methane production in the sulfate-depleted sediments of two marine basins. Geochimica et Cosmochimica Acta 54: 403–411.

    Article  CAS  Google Scholar 

  • Leloup, J., A. Loy, N.J. Knab, C. Borowski, M. Wagner, and B.B. Jørgensen. 2007. Diversity and abundance of sulfate reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environmental Microbiology 91: 131–142.

    Article  Google Scholar 

  • Letunic, I., and P. Bork. 2007. Interactive tree of life iTOL: an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128.

    Article  CAS  Google Scholar 

  • Liu, X.Z., L.M. Zhang, J.I. Prosser, and J. He. 2009. Abundance and community structure of sulfate reducing prokaryotes in a paddy soil of southern China under different fertilization regimes. Soil Biology and Biochemistry 41: 687–694.

    Article  CAS  Google Scholar 

  • Loy, A., K. Küsel, A. Lehner, H.L. Drake, and M. Wagner. 2004. Microarray and functional gene analyses of sulfate-reducing prokaryotes in low-sulfate, acidic fens reveal cooccurrence of recognized genera and novel lineages. Applied and Environmental Microbiology 70: 6998–7009.

    Article  CAS  Google Scholar 

  • Lozupone, C.A., and R. Knight. 2007. Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America 104: 11436–11440.

    Article  CAS  Google Scholar 

  • Lozupone, C.A., M. Hamady, and R. Knight. 2006. UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 71: 371.

    Article  Google Scholar 

  • Meehl, G.A., W.M. Washington, W.D. Collins, J.M. Arblaster, A. Hu, L.E. Buja, W.G. Strand, and H. Teng. 2005. How much more global warming and sea level rise? Science 307: 1769–1772.

    Article  CAS  Google Scholar 

  • Miletto, M., A. Loy, A.M. Antheunisse, R. Loeb, P.L.E. Bodelier, and H.J. Laanbroek. 2008. Biogeography of sulfate-reducing prokaryotes in river floodplains. FEMS Microbiology Ecology 64: 395–406.

    Article  CAS  Google Scholar 

  • Mitsch, W.J., and J.G. Gosselink. 2007. Wetlands. Hoboken.

  • Moreau, J.W., R.A. Zierenberg, and J.F. Banfield. 2010. Diversity of dissimilatory sulfite reductase genes dsrAB in a salt marsh impacted by long-term acid mine drainage. Applied and Environmental Microbiology 76: 4819–4828.

    Article  CAS  Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869–2877.

    Article  Google Scholar 

  • Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural systems. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Mussmann, M., M. Richter, T. Lombardot, A. Meyerdierks, J. Kuever, M. Kube, F.O. Glöcker, and R. Amann. 2005. Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. Journal of Bacteriology 187: 7126–7137.

    Article  CAS  Google Scholar 

  • Muyzer, G., and A.J.M. Stams. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews. Microbiology 6: 441–454.

    CAS  Google Scholar 

  • Nakada, M., and H. Inoue. 2005. Rates and causes of recent global sea-level rise inferred from long tide gauge data records. Quaternary Science Reviews 24: 1217–1222.

    Article  Google Scholar 

  • Neubauer, S.C., I.C. Anderson, and B.B. Neikirk. 2005. Nitrogen cycling and ecosystem exchanges in a Virginia tidal freshwater marsh. Estuaries 28: 909–922.

    Article  CAS  Google Scholar 

  • Odum, W.E. 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19: 147–176.

    Article  Google Scholar 

  • Plugge, C.M., Zhang, W., Scholten, J.C., and A.J.M. Stams. 2011. Metabolic flexibility of sulfate-reducing bacteria. Frontiers in Microbiology 2. doi: 10.3389/fmicb.2011.00081.

  • Quillet, L., L. Besaury, M. Popova, S. Paissé, J. Deloffre, and B. Ouddane. 2012. Abundance, diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway Estuary (UK). Marine Biotechnology 14: 363–381.

    Article  CAS  Google Scholar 

  • R Core Team. 2012. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

    Google Scholar 

  • Reed, D.J. 1995. The response of coastal marshes to sea-level rise: survival or submergence? Earth Surface Processes and Landforms 20: 39–48.

    Article  Google Scholar 

  • Reed, H.E., and J.B. Martiny. 2013. Microbial composition affects the functioning of estuarine sediments. The ISME Journal 7: 868–879.

    Article  CAS  Google Scholar 

  • Rignot, E., I. Velicogna, M.R. van den Broeke, A. Monaghan, and J.T.M. Lenaerts. 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters 38: L05503.

    Article  Google Scholar 

  • Ross, A.C., R.G. Najjar, M. Li, M.E. Mann, S.E. Ford, and B. Katz. 2015. Sea-level rise and other influences on decadal-scale salinity variability in a coastal plain estuary. Estuarine, Coastal and Shelf Science 157: 79–92.

    Article  Google Scholar 

  • Roychoudhury, A.N., D. Cowan, D. Porter, and A. Valverde. 2013. Dissimilatory sulphate reduction in hypersaline coastal pans: an integrated microbiological and geochemical study. Geobiology 11: 224–233.

    Article  CAS  Google Scholar 

  • Rysgaard, S., P. Thastum, T. Dalsgaard, P.B. Christensen, and N.P. Sloth. 1999. Effects of salinity on NH4 + adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22: 21–30.

    Article  CAS  Google Scholar 

  • Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hertmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, and C.F. Weber. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537–7541.

    Article  CAS  Google Scholar 

  • Schmalenberger, A., H.L. Drake, and K. Küsel. 2007. High unique diversity of sulfate-reducing prokaryotes characterized in a depth gradient in an acidic fen. Environmental Microbiology 9: 1317–1328.

    Article  CAS  Google Scholar 

  • Solorzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801.

    Article  CAS  Google Scholar 

  • Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

    Article  CAS  Google Scholar 

  • Stams, A.J. 1994. Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek 66: 271–294.

    Article  CAS  Google Scholar 

  • Steger, D., C. Wentrup, C. Braunegger, P. Deevong, M. Hofer, A. Richer, C. Baranyi, M. Pester, M. Wagner, and A. Loy. 2011. Microorganisms with novel dissimilatory (Bi)sulfite reductase genes are widespread and part of the core microbiota in low-sulfate peatlands. Applied and Environmental Microbiology 77: 1231–1242.

    Article  CAS  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    Article  CAS  Google Scholar 

  • Treusch, A.H., K.L. Vergin, L.A. Finlay, M.G. Donatz, R.M. Burton, C.A. Carlson, and S.J. Giovannoni. 2009. Seasonality and vertical structure of microbial communities in an ocean gyre. The ISME Journal 3: 1148–1163.

    Article  Google Scholar 

  • Vile, M.A., S.D. Bridgham, and R.K. Wieder. 2003a. Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecological Applications 13: 720–734.

    Article  Google Scholar 

  • Vile, M.A., S.D. Bridgham, R.K. Wieder, and M. Novák. 2003b. Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Global Biogeochemical Cycles 17: 1–7.

    Article  Google Scholar 

  • Waldner, P., A. Marchetto, A. Thiomonier, M. Schmitt, M. Rogota, O. Granke, V. Mues, K. Hansen, G.P. Karlsson, D. Zlindra, N. Clarke, A. Verstraeten, A. Lazdins, C. Schimming, C. Iacoban, A. Lindroos, A. Vanguelova, S. Benhamm, H. Messenburg, M. Nicolas, A. Kowalska, V. Apuhtin, U. Napa, Z. Lachmanova, F. Kristoefel, A. Bleeker, M. Ingerslev, L. Vesterdal, J. Molina, U. Fischer, W. Seidling, M. Jonard, P. O’Dea, J. Johnson, R. Fischer, and M. Lorenz. 2014. Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmospheric Environment 95: 363–374.

    Article  CAS  Google Scholar 

  • Ward, D.M., and M.R. Winfrey. 1985. Interactions between methanogenic and sulfate-reducing bacteria in sediments. Advances in Aquatic Microbiology 3: 141–179.

    Google Scholar 

  • Weston, N.B., R.E. Dixon, and S.B. Joye. 2006. Ramifications of increased salinity in tidal freshwater sediments: geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research, Biogeosciences 11, G01009.

    Google Scholar 

  • Weston, N.B., M.A. Vile, S.C. Neubauer, and D.J. Velinsky. 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102: 135–151.

    Article  CAS  Google Scholar 

  • Weston, N.B., S.C. Neubauer, D.J. Velinsky, and M.A. Vile. 2014. Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry 120: 163–189.

    Article  CAS  Google Scholar 

  • Wieder, R.K., and G.E. Lang. 1988. Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia. Biogeochemistry 5: 221–242.

    Article  CAS  Google Scholar 

  • Yang, S.L. 1998. The role of Scirpus marsh in attenuation of hydrodynamics and retention of fine sediment in the Yangtze Estuary. Estuarine, Coastal and Shelf Science 47: 227–233.

    Article  Google Scholar 

  • Zhou, J., Q. He, C.L. Hemme, A. Mukhopadhyay, K. Hillesland, A. Zhou, Z. He, J.D. Van Nostrand, T.C. Hazen, D.A. Stahl, J.D. Wall, and A.P. Arkin. 2011. How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nature Reviews. Microbiology 96: 452–466.

    Article  Google Scholar 

  • Zverlov, V., M. Klein, S. Lücker, M.W. Friedrich, J. Kellermann, D.A. Stahl, A. Loy, and M. Wagner. 2005. Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. Journal of Bacteriology 187: 2203–2208.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank James Quinn for assistance in the field and laboratory, Dennis Wykoff for assistance with DNA extraction, Jason Scheidel for equipment use, and the Department of Biology at Villanova University for additional resources. This research was supported by the Environmental Protection Agency Science to Achieve Results Grant (EPA-STAR, RD 83222202) to M.A.V. and by a Villanova Undergraduate Research Fellowship to T.Z. Additional support was provided to JLB and PJK by two National Science Foundation awards (NSF OCE 1353140 and NSF DEB 1350491) to JLB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Kearns.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Communicated by Cathleen Wigand

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 57 kb)

ESM 2

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kearns, P.J., Weston, N.B., Bowen, J.L. et al. Tidal Freshwater Marshes Harbor Phylogenetically Unique Clades of Sulfate Reducers That Are Resistant to Climate-Change-Induced Salinity Intrusion. Estuaries and Coasts 39, 981–991 (2016). https://doi.org/10.1007/s12237-016-0067-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-016-0067-3

Keywords

Navigation