Skip to main content
Log in

Heat Stress Modulates Superoxide and Hydrogen Peroxide Dismutation and Starch Synthesis during Tuber Development in Potato

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Potato production is being affected by high temperature stresses worldwide due to global warming. The biological basis of carbohydrate metabolism and reactive oxygen species (ROS) activity in potato tubers under high temperature stress is yet to be clearly understood. We evaluated the activities of two of the most important primary ROS members: superoxide (O2.) and hydrogen peroxide (H2O2) and their scavengers to understand the effects of heat stress on the changes of carbohydrates in growing tubers of five potato varieties including heat-tolerant and heat‐susceptible check varieties. The enzymatic ROS-scavengers were found to be differentially activated in these genotypes. The detoxification mechanism was more efficient in dual-stress (heat and salt) tolerant variety compared to single-stress tolerant variety. The antioxidant activity was increased by several folds in the tolerant variety compared to the susceptible variety. Storage starch accumulation and its composition was affected by O2. and H2O2 metabolisms in potato tuber. The findings will be helpful in understanding the biological basis of the effect of ROS-detoxification on starch accumulation in growing tubers under heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Pic. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Agri-Advisory Portal, Bangladesh Agricultural Research Council (BARC), Ministry of Agriculture. 2024. http://cropzoning.gov.bd:82/CropInfo/CropVarieties?c=36

  • Ahmed, N., I. J. Tetlow, S. Nawaz, A. Iqbal, M. Mubin, M. S. N. U. Rehman, A. Butt, D. A. Lightfoot, and M. Maekawa. 2015. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice. Journal Science Food Agriculture 95(12): 2159–2354.

    Google Scholar 

  • Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology 141(2): 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltruschat, H., J. Fodor, B. D. Harrach, E. Niemczyk, B. Barna, G. Gullner, A. Janeczko, K.-H. Kogel, P. Schäfer, I. Schwarczinger, A. Zuccaro, and A. Skoczowski. 2008. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytologist 180(2): 501–510.

    Article  CAS  PubMed  Google Scholar 

  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205–207.

    Article  CAS  Google Scholar 

  • Bita, C. E., and T. Gerats. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4: 1–18.

    Article  Google Scholar 

  • Bláha, L., and T. Středa. 2016. Plant integrity-the important factor of adaptability to stress conditions. Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives InTech: https://doi.org/10.5772/60477.

  • Camacho-Pereira, J., L. E. Meyer, L. B. Machado, M. F. Oliveira, and A. Galina. 2009. Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity. Plant Physiology 149(2): 1099–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chagas, R. M., J. A. G. Silveira, R. V. Ribeiro, V. A. Vitorello, and H. Carrer. 2008. Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pesticide Biochemistry and Physiology 90: 181–188.

    Article  CAS  Google Scholar 

  • Couée, I., C. Sulmon, G. Gouesbet, and A. Amrani. 2006. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. Journal of Experimental Botany 57(3): 449–459.

    Article  PubMed  Google Scholar 

  • Csiszár, J, E., I. Lantos, E. Tari, B. Madoşă, Á. Wodala, F. Vashegyi, A. Horváth, M. Pécsváradi, B. Szabó, Á. Bartha, A. Gallé, G. Lazăr, M. Coradini, S. Staicu, S. Postelnicu, G. Mihacea, Nedelea, and L. Erdei. 2007. Antioxidant enzyme activities in Allium species and their cultivars under water stress. Plant Soil and Environment 53(12): 517–523.

    Article  Google Scholar 

  • Dahal, K., X-Q. Li, H. Tai, A. Creelman, and B. Bizimungu. 2019. Improving potato stress tolerance and tuber yield under a climate change scenario - a current overview. Frontiers in Plant Science 10: 1–16.

    Article  Google Scholar 

  • Das, K., and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2: 1–13.

    Article  CAS  Google Scholar 

  • Del Río, L. A., F. J. Corpas, L. M. Sandalio, J. M. Palma, M. Gómez, and J. B. Barroso. 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany 53(372): 1255–1272.

    Article  PubMed  Google Scholar 

  • Del Río, L. A., L. M. Sandalio, F. J. Corpas, J. M. Palma, and J. B. Barroso. 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging and role in cell signalling. Plant Physiology 141: 330–335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, X., X. Li, L. Wang, J. Zeng, L. Huang, L. Xiong, S. Song, J. Zhao, L. Hou, F. Wang, and Y. Pei. 2021. Sucrose enhanced reactive oxygen species generation promotes cotton fibre initiation and secondary cell wall deposition. Plant Biotechnology Journal 19: 1092–1094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duque, L. O., and T. L. Setter. 2013. Cassava response to water deficit in deep pots: root and shoot growth, ABA, and carbohydrate reserves in stems, leaves and storage roots. Tropical Plant Biology 6: 199–209.

    Article  CAS  Google Scholar 

  • Dwelle, R. B., G. E. Kleinkopf, and J. J. Pavek. 1981. Stomatal conductance and gross photosynthesis of potato (Solanum tuberosum L.) as influenced by irradiance, temperature, and growth stage. Potato Research 24: 49–59.

    Article  Google Scholar 

  • Watts, W. R. 1975. Air and soil temperature differences in controlled environments, as a consequence of high radiant flux densities and of day/night temperature changes. Plant and Soil 42: 299–303.

    Article  Google Scholar 

  • El_Komy, M. H., A. A. Saleh, Y. E. Ibrahim, and Y. Y. Molan. 2020. Early production of reactive oxygen species coupled with an efficient antioxidant system play a role in potato resistance to late blight. Tropical Plant 45: 44–55.

  • Eldredgc, E. P., Z. A. Holmes, A. R. Mosley, C. C. Shock, and T. D. Stieber. 1996. Effect of transitory water stress on potato tuber stem-end reducing sugar and fry colour. American Potato Journal 73: 517–530.

    Article  Google Scholar 

  • Elia, A. C., R. Galarini, M. I. Taticchi, A. J. M. Dörr, and L. Mantilacci. 2003. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology and Environmental Safety 55: 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Elstner, E. F., and A. Heupel. 1976. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase. Analytical Biochemistry 70: 616–620.

    Article  CAS  PubMed  Google Scholar 

  • Feng, P., Y. Wang, Y. Mu, J. Un, J. Kang, N. Wu, and X. Lu. 2019. Effect of high temperature on potato starch content, amylase activity and yield. Southwest China Journal of Agricultural Sciences 32(6): 1253–1258.

    Google Scholar 

  • Fukao, T., and J. Bailey-Serres. 2004. Plant responses to hypoxia - is survival a balancing act? Trends in Plant Science 9(9): 449–456.

    Article  CAS  PubMed  Google Scholar 

  • Furtana, G. B., K. Sönmez, Ş.Ş. Ellialtıoğlu, and R. Tıpırdamaz. 2019. The effects of hydrogen peroxide and nitric oxide on ion contents and lipid peroxidation levels of pepper callus tissues under salt stress. Research Journal of Chemistry and Environment 23(1): 123–130.

    Google Scholar 

  • Gautam, S., R. Morey, N. Rau, D. C. Scheuring, D. Kurouski, and M. I. Vales. 2023. Raman spectroscopy detects chemical differences between potato tubers produced under normal and heat stress growing conditions. Front Plant Science 14: 1–15.

    Article  Google Scholar 

  • Geigenberger, P., M. Geiger, and M. Stitt. 1998. High-temperature perturbation of starch synthesis is attributable to inhibition of ADP-Glucose pyrophosphorylase by decreased levels of glycerate-3-phosphate in growing potato tubers. 117: 1307–1316.

  • Gill, S. S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. Plant Physiology 117: 1307–1316.

    Google Scholar 

  • Golovko, T. K., and G. N. Tabalenkova. 2019. Source-sink relationships in potato plants. Russian Journal of Plant Physiology 66(4): 313–320.

    Article  Google Scholar 

  • Gregorio, G. B., D. Senadhira, and R. D. Mendoza. 1997. Screening rice for salinity tolerance. IRRl Discussion Paper Series 22:1–30.

  • Hancock, R. D., W. L. Morris, L. J. M. Ducreux, J. A. Morris, M. Usman, S. R. Verrall, J. Fuller, C. G. Simpson, R. Zhang, P. E. Hedley, and M. A. Taylor. 2014. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant, Cell and Environment. 37: 439–450.

  • Harper, S. 2004. Potato tuber quality management in relation to environmental and nutritional stress. Horticultural Australia Ltd. Sydney.

  • Hastilestari, B. R., J. Lorenz, S. Reid, J. Hofmann, D. Pscheidt, U. Sonnewald, and S. Sonnewald. 2018. Deciphering source and sink responses of potato plants (Solanum tuberosum L.) to elevated temperatures. Plant Cell & Environment 41: 2600–2616.

    Article  CAS  Google Scholar 

  • Hossain, M. A., M. Hasanuzzaman, and M. Fujita. 2010. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants 16(3): 259–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam, K. I., A. Khan, and T. Islam. 2015. Correlation between atmospheric temperature and soil temperature: a case study for Dhaka, Bangladesh. Atmospheric and Climate Sciences 5: 200–208.

    Article  Google Scholar 

  • Jana, S., and M. A. Choudhuri. 1981. Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquatic Botany 11: 67–77.

    Article  CAS  Google Scholar 

  • Janku, M., L. Luhová, and M. Petrivalský. 2019. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants 8: 1–15.

    Article  Google Scholar 

  • Jansky, S., and D. Fajardo. 2016. Amylose content decreases during tuber development in potato. Journal of Science Food Agriculture 96(13): 4560–4564.

    Article  CAS  Google Scholar 

  • Keunen, E., D. Peshev, J. Vangronsveld, W. V. D. Ende, and A. Cuypers. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell and Environment 36: 1242–1255.

    Article  CAS  Google Scholar 

  • Krauss, A., and A. Marschner. 1984. Growth rate and carbohydrate metabolism of potato tubers exposed to high temperatures. Potato Research 27: 297303.

    Article  Google Scholar 

  • Lafta, A. M., and J. H. Lorenzen. 1995. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiology 109(2): 637–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohabir, G., P, John. 1988. Effect of temperature on starch synthesis in potato tuber tissue and in amyloplasts. Plant Physiology 88: 1222–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller, I. M. 2001. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Biology 52: 561–591.

    Article  Google Scholar 

  • Møller, I. M., and L. J. Sweetlove. 2010. ROS signalling – specificity is required. Trends in Plant Science 15: 370–374.

    Article  PubMed  Google Scholar 

  • Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22(5): 867–880.

    CAS  Google Scholar 

  • Noda, T., S. Tsuda, M. Mori, S. Takigawa, C. Matsuura-Endo, N. Hashimoto, and H. Yamauchiet. 2004. Properties of starches from potato varieties grown in Hokkaido. Journal of Applied Glycoscience 51: 241–246.

    Article  CAS  Google Scholar 

  • Onaga, G., and K. Wydra. 2016. Advances in plant tolerance to biotic stresses. In: Plant Genomics. Ed. Ibrokhim Y. Abdurakhmonov. InTech. 229–272.

  • Patade, V. Y., S. Bhargava, and P. Suprasanna. 2011. Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation and antioxidant defense. Journal of Plant Interactions 6(4): 275–282.

    Article  CAS  Google Scholar 

  • Paul, S., M. Farooq, and N. Gogoi. 2016. Influence of high temperature on carbon assimilation, enzymatic antioxidants and tuber yield of different potato cultivars. Russian Journal of Plant Physiology 63(3): 319–325.

    Article  CAS  Google Scholar 

  • Quan, L. J., B. Zhang, W. W. Shi, and H. Y. Li. 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology 50(1): 2–18.

    Article  CAS  PubMed  Google Scholar 

  • Rajput, V. D., R. K. Harish, K. K. Singh, L. Verma, F. R. Sharma, M. Quiroz-Figueroa, V. S. Meena, T. Gour, Minkina, and S. Sushkova. 2021. Recent developments in enzymatic antioxidant defense mechanism in plants with special reference to abiotic stress. Biology 10: 1–28.

    Article  CAS  Google Scholar 

  • Ravera, S., M. Bartolucci, P. Cuccarolo, E. Litamè, M. Illarcio, D. Calzia, P. Degan, A. Morelli, and I. Panfoli. 2015. Oxidative stress in myelin sheath: the other face of the extramitochondrial oxidative phosphorylation ability. Free Radical Research 49(9): 1156–1164.

    Article  CAS  PubMed  Google Scholar 

  • Rykaczewska, K. 2013. The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. American Journal of Plant Sciences 4: 2386–2393.

    Article  Google Scholar 

  • Rykaczewska, K. 2015. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. American Journal of Potato Research 92: 339–349.

    Article  CAS  Google Scholar 

  • Saed-Moucheshi, A., A. Shekoofa, and M. Pessarakli. 2014. Reactive oxygen species (ROS) generation and detoxifying in plants. Journal of Plant Nutrition 37: 1573–1585.

    Article  CAS  Google Scholar 

  • Sheng, Y., I. A. Abreu, D. E. Cabelli, M. J. Maroney, A. F. Miller, and M. Teixeira. 2014. and J.S. Valentine. Superoxide dismutases and superoxide reductases. Chemical Reviews 114: 3854–3918.

  • Singh, B., S. Kukreja, and U. Goutam. 2019a. Impact of heat stress on potato (Solanum tuberosum L.): present scenario and future opportunities. Journal of Horticultural Science and Biotechnology 95(4): 407–424.

    Article  Google Scholar 

  • Singh, A., A. Kumar, S. Yadav, and I. K. Singh. 2019b. Reactive oxygen species-mediated signalling during abiotic stress. Plant Gene 18:1–7.

    Article  Google Scholar 

  • Sterrett, S. B., M. R. Henningre, and G. S. Lee. 1991. Relationship of internal heat necrosis of potato to time and temperature after planting. Journal of the American Society for Horticultural Science 116(4): 697–700.

    Article  Google Scholar 

  • Sun, Y., L. W. Oberley, and Y. Li. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry 34(3): 497–500.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, Y., T. Hibino, Y. Hayashi, A. Tanaka, S. Kishitani, T. Takabe, S. Yokota, and T. Takabe. 1999. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science 148: 131–138.

    Article  CAS  Google Scholar 

  • Tang, R., S. Niu, G. Zhang, G. Chen, M. Haroon, Q. Yang, O. P. Rajora, and X. Q. Li. 2018. Physiological and growth responses of potato cultivars to heat stress. Botany 96: 897–912.

    Article  CAS  Google Scholar 

  • Thalmann, M., and D. Santelia. 2017. Starch as a determinant of plant fitness under abiotic stress. New Phytologist 214: 943–951.

    Article  CAS  PubMed  Google Scholar 

  • Timlin, D., L. S. M. Rahman, J. Baker, V. R. Reddy, D. Fleisher, and B. Quebedeaux. 2006. Whole plant photosynthesis, development, and carbon partitioning in potato as a function of temperature. Agronomy Journal 98: 1195–1203.

    Article  Google Scholar 

  • Uchida, A., A. T. Jagendorf, T. Hibino, T. Takabe, and T. Takabe. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science 163: 515–523.

    Article  CAS  Google Scholar 

  • Van Dam, J., P. L. Kooman, and P. C. Struik. 1996. Effects of temperature and photoperiod on early growth and final number of tubers in potato (Solanum tuberosum L). Potato Research 39: 51–62.

    Article  Google Scholar 

  • Xalxo, R., B. Yadu, J. Chandra, V. Chandrakar, and S. Keshavkant. 2020. Alteration in carbohydrate metabolism modulates thermotolerance of plant under heat stress. Heat Stress Tolerance in Plants: Physiological, Molecular and Genetic Perspectives (First Edition), John Wiley & Sons Ltd: 77–115.

  • Yacoubi, R., C. Job, M. Belghazi, W. Chaibi, and D. Job. 2013. Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. Seed Science Research 23(2): 99–110.

    Article  CAS  Google Scholar 

  • Yencho, G. C., P. H. McCord, K. G. Haynes, and S. B. R. Sterrett. 2008. Internal heat necrosis of potato - A review. American Journal of Potato Research 85: 69–76.

    Article  Google Scholar 

  • Zeeman, S. C., J. Kossmann, and A. M. Smith. 2010. Starch: its metabolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology 61: 209–234.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., P. Yang, S. Liu, C. Wang, and J. Liu. 2022. Evaluation of the methods for estimating leaf chlorophyll content with SPAD chlorophyll meters. Remote Sensing 14: 1–17.

    Google Scholar 

  • Zhao, X., P. Hofvander, M. Andersson, and R. Andersson. 2023. Internal structure and thermal properties of potato starches varying widely in amylose content. Food Hydrocoll 135: 1–8.

    Article  Google Scholar 

  • Zheng, X., Y. Jitsuyama, T. Terauchi, and K. Iwama. 2009. Effects of drought and shading on non-structural carbohydrate stored in the stem of potato (Solanum tuberosum L). Plant Production Science 12(4): 449–452.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Bangladesh Agricultural University Research System (BAURES). The analytical work was supported by laboratory of Bangladesh Agricultural Research Institute. The experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jobadatun Naher.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimers: All co-authors read and approved the manuscript. There is nothing to disclaim.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naher, J., Sabuj, Z.H., Sumona, S.I. et al. Heat Stress Modulates Superoxide and Hydrogen Peroxide Dismutation and Starch Synthesis during Tuber Development in Potato. Am. J. Potato Res. (2024). https://doi.org/10.1007/s12230-024-09950-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12230-024-09950-w

Keywords

Navigation