Skip to main content
Log in

Influence of Mating Structure on Agronomic Performance, Chip Fry Color, and Genetic Distance Among Biparental Tetraploid Families

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

The impact of mating structure on progeny performance is not routinely analyzed in potato breeding programs, despite the importance of choosing parental lines. Varying degrees of assortative and disassortative mating can have a significant effect on the agronomic performance and cold chipping ability of potato breeding clones. A disassortative mating strategy of crossing parents from different market types can incorporate commercially relevant traits into a market class which lacked that trait. Here we report the effect of mating structure in three breeding families created from parental lines from different market classes, within the same market class, and from self-pollination. Disassortative mating structure produced clones with increased yield and tuber size while assortative mating produced clones with improved cold-storage chipping ability. Inbreeding depression was observed for yield, tuber traits, and chip color in the selfed progeny. Chip color in a russet type clone was improved through crossing with an elite chipping parent, demonstrating a viable method for improving russet processing quality. Mating structure explained a significant proportion of phenotypic variance for yield, tuber, and chipping traits across the three families. Discriminant analysis of principal components and genetic distance based on SNP markers from the SolCAP project were able to discriminate among family types and were informative about the relative diversity generated from each particular cross. A number of promising genotypes from both the russet × chipper family and the chipper × chipper families were identified which outperformed parental varieties for chip color and tuber size.

Resumen

El impacto en la estructura de apareamiento en el comportamiento de la progenie no se analiza de rutina en los programas de mejoramiento de papa, a pesar de la importancia de la selección de las líneas parentales. La variabilidad de grados de cruzamiento al azar y no al azar puede tener un efecto significativo en el comportamiento agronómico y en la habilidad de freído en frío de los clones de papa. Una estrategia de cruzas no al azar de los progenitores de diferentes tipos de mercado puede incorporar comercialmente caracteres relevantes en una clase de mercado que carecía de tal característica. Aquí reportamos el efecto de estructura de cruzas en tres familias de mejoramiento creadas de líneas parentales de diferentes clases de mercado, dentro de la misma clase, y de autopolinización. La estructura de apareamiento no agrupada produjo clones con aumento en el rendimiento y tamaño de tubérculo, mientras que el cruzamiento agrupado no al azar produjo clones con habilidad mejorada de freído en almacenamiento en frío. Se observó depresión endogámica para rendimiento, características de tubérculo y color de freído en la progenie de autocruzas. Se mejoró el color del freído en un clon tipo russet mediante el cruzamiento con un progenitor élite de freído, con lo que se demuestra un método viable para mejorar la calidad de procesamiento en tipo russet. La estructura de los cruzamientos explicaron una proporción significativa de varianza fenotípica para caracteres de rendimiento, tubérculo y freído a lo largo de las tres familias. El análisis discriminativo de los componentes principales y de distancia genética con base en marcadores SNP del proyecto SolCAP fue capaz de diferenciar entre los tipos de familia y fueron informativos acerca de la diversidad relativa generada por cada cruza en particular. Se identificó un número de genotipos prometedores tanto de la familia de piel rugosa × procesamiento (russet × chipper) como de la de procesamiento × procesamiento (chipper × chipper) que superaron a las variedades de los progenitores para color de la hojuela y tamaño de tubérculo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AgRay Sizer Manual. 2013. Acampo: AgRay Inc.

  • Akeley, R.V., W.R. Mills, C.E. Cunningham, and James Watts. 1968. Lenape: a new potato variety high in solids and chipping quality. American Potato Journal 45: 142–145. doi:10.1007/BF02863068.

    Article  Google Scholar 

  • Bates, D., M. Maechler, B.M. Bolker, and S. Walker. 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7, URL: http://CRAN.R-project.org/package=lme4.

  • Bingham, E.T. 1980. Maximizing Heterozygosity in Autopolyploids. In Polyploidy, ed. Walter H. Lewis, 471–489. Basic Life Sciences 13. Springer US.

  • Bisognin, D.A., M.H. Rigão, S.J. Lopes, and L. Storck. 2012. Heritability and correlation among potato tuber traits. Crop Breeding and Applied Biotechnology 12: 215–219. doi:10.1590/S1984-70332012000300009.

    Article  Google Scholar 

  • Bonierbale, M.W., R.L. Plaisted, and S.D. Tanksley. 1993. A test of the maximum heterozygosity hypothesis using molecular markers in tetraploid potatoes. Theoretical and Applied Genetics 86: 481–491. doi:10.1007/BF00838564.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw, J.E., and G.R. Mackay. 1994. Potato genetics. Oxford: CAB International.

    Google Scholar 

  • Bradshaw, J.E., H.E. Stewart, R.L. Wastie, M.F.B. Dale, and M.S. Phillips. 1995. Use of seedling progeny tests for genetical studies as part of a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics 90: 899–905. doi:10.1007/BF00222029.

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw, J.E., D. Todd, and R.N. Wilson. 2000. Use of tuber progeny tests for genetical studies as part of a potato (Solanum tuberosum subsp. tuberosum) breeding programme. Theoretical and Applied Genetics 100: 772–781. doi:10.1007/s001220051351.

    Article  Google Scholar 

  • Bradshaw, J.E., C.A. Hackett, B. Pande, R. Waugh, and G.J. Bryan. 2008. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theoretical and Applied Genetics 116: 193–211. doi:10.1007/s00122-007-0659-1.

    Article  PubMed  Google Scholar 

  • Brown, J., and P.D.S. Caligari. 1989. Cross prediction in a potato breeding programme by evaluation of parental material. Theoretical and Applied Genetics 77: 246–252. doi:10.1007/BF00266194.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J., P.D.S. Caligari, M.F.B. Dale, G.E.L. Swan, and G.R. Mackay. 1988. The use of cross prediction methods in a practical potato breeding programme. Theoretical and Applied Genetics 76: 33–38. doi:10.1007/BF00288828.

    Article  CAS  PubMed  Google Scholar 

  • Cochran, W.G., and G.M. Cox. 1992. Experimental Designs, 2nd Edition, 2nd ed. New York: Wiley.

    Google Scholar 

  • Coffin, R.H., R.Y. Yada, Kl. Parkin, B. Grodzinski, and D.W. Stanley. 1987. Effect of low temperature storage on sugar concentrations and chip color of certain processing potato cultivars and selections. Journal of Food Science 52: 639–645. doi:10.1111/j.1365-2621.1987.tb06692.x.

    Article  Google Scholar 

  • Corbeil, R.R., and S.R. Searle. 1976. Restricted Maximum Likelihood (REML) estimation of variance components in the mixed model. Technometrics 18: 31–38. doi:10.1080/00401706.1976.10489397.

    Article  Google Scholar 

  • Dale, M.F., and G.R. Mackay. 1994. Inheritance of table and processing quality. In Potato genetics, ed. J.E. Bradshaw and G.R. Mackay, 285–315. Wallingford: CAB International.

    Google Scholar 

  • D25LT User’s Manual Version 2.1. 2008. Reston: Hunter Associates Laboratory.

  • Douches, D.S., K. Jastrzebski, J. Coombs, R.W. Chase, R. Hammerschmidt, and W.W. Kirk. 2001. Liberator: a round white chip- processing variety with resistance to scab. American Journal of Potato Research 78: 425–431. doi:10.1007/BF02896374.

    Article  Google Scholar 

  • Douches, D.S., D. Maas, R. Jastrzebski, and R.W. Chase. 1996. Assessment of potato breeding progress in the USA over the last century. Crop Science 36: 1544–1552. doi:10.2135/cropsci1996.0011183X003600060024x.

    Article  Google Scholar 

  • Fehr, W.R. 1987. Principles of cultivar development: Theory and technique. Ames: Macmillan Pub Co.

    Google Scholar 

  • Fisher, R.A. 1947. The theory of linkage in polysomic inheritance. Philosophical Transactions of the Royal Society of London B: Biological Sciences 233: 55–87. doi:10.1098/rstb.1947.0006.

    Article  Google Scholar 

  • Gallais, A. 2003. Quantitative genetics and breeding methods in autopolyploid plants. Mieux Comprendre. Paris: Institut national de la recherche agronomique.

  • Garbe, J.R., and Y. Da. 2008. Pedigraph: A Software Tool for the Graphing and Analysis of Large Complex Pedigree. User manual Version 2.4. Department of Animal Science, University of Minnesota.

  • Gopal, J., V. Kumar, and S.K. Luthra. 2008. Top-cross vs. poly-cross as alternative to test-cross for estimating the general combining ability in potato. Plant Breeding 127: 441–445. doi:10.1111/j.1439-0523.2008.01491.x.

    Article  Google Scholar 

  • Groza, H.I., B.D. Bowen, W.R. Stevenson, J.R. Sowokinos, M.T. Glynn, C. Thill, S.J. Peloquin, A.J. Bussan, and J. Jiang. 2006. White Pearl—a chipping potato variety with high level of resistance to cold sweetening. American Journal of Potato Research 83: 259–267. doi:10.1007/BF02872162.

    Article  Google Scholar 

  • Hackett, C.A., K. McLean, and G.J. Bryan. 2013. Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS ONE 8: e63939. doi:10.1371/journal.pone.0063939.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamilton, J.P., C.N. Hansey, B.R. Whitty, K. Stoffel, A.N. Massa, A. Van Deynze, W.S. De Jong, D.S. Douches, and C.R. Buell. 2011. Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics 12: 302. doi:10.1186/1471-2164-12-302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson, C.R. 1974. General flexibility of linear model techniques for sire evaluation. Journal of Dairy Science 57: 963–972. doi:10.3168/jds.S0022-0302(74)84993-3.

    Article  Google Scholar 

  • Hirsch, C.N., C.D. Hirsch, K. Felcher, J. Coombs, D. Zarka, A. Van Deynze, W. De Jong, et al. 2013. Retrospective view of North American potato (Solanum tuberosum L.) Breeding in the 20th and 21st Centuries. G3: Genes|Genomes|Genetics 3: 1003–1013. doi:10.1534/g3.113.005595.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hurvich, L.M., and D. Jameson. 1957. An opponent-process theory of color vision. Psychological Review 64: 384–404. pdh.

    Article  PubMed  Google Scholar 

  • Jansky, S.H., A. Hamernik, and P.C. Bethke. 2011. Germplasm release: tetraploid clones with resistance to cold-induced sweetening. American Journal of Potato Research 88: 218–225. doi:10.1007/s12230-011-9186-3.

    Article  CAS  Google Scholar 

  • Jombart, T., and I. Ahmed. 2011. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics: btr521. doi:10.1093/bioinformatics/btr521.

  • J.S. Rogers. 1972. Measures of genetic similarity and genetic distance. In Wheeler, M.R., (ed.) Studies in Genetics VII, 145–173. University of Texas Publication 7213.

  • Lin, C.-S., and G. Poushinsky. 1985. A modified augmented design (type 2) for rectangular plots. Canadian Journal of Plant Science 65: 743–749. doi:10.4141/cjps85-094.

    Article  Google Scholar 

  • Loiselle, F., G.C.C. Tai, and B.R. Christie. 1990. Genetic components of chip color evaluated after harvest, cold storage and reconditioning. American Potato Journal 67: 633–646. doi:10.1007/BF03043449.

    Article  Google Scholar 

  • Loiselle, F., G.C.C. Tai, and B.R. Christie. 1991. Pedigree, agronomic and molecular divergence of parents in relation to progeny performance in potato. Potato Research 34: 305–316. doi:10.1007/BF02360504.

    Article  Google Scholar 

  • Love, S.L., J.J. Pavek, A. Thompson-Johns, and W. Bohl. 1998. Breeding progress for potato chip quality in North American cultivars. American Journal of Potato Research 75: 27–36. doi:10.1007/BF02883514.

    Article  Google Scholar 

  • Lynch, D.R., L.M. Kawchuk, R. Yada, and J.D. Armstrong. 2003. Inheritance of the response of fry color to low temperature storage. American Journal of Potato Research 80: 341–344. doi:10.1007/BF02854319.

    Article  Google Scholar 

  • McCord, P.H., B.R. Sosinski, K.G. Haynes, M.E. Clough, and G.C. Yencho. 2011a. Linkage mapping and QTL analysis of agronomic traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Crop Science 51: 771–785. doi:10.2135/cropsci2010.02.0108.

    Article  CAS  Google Scholar 

  • McCord, P.H., B.R. Sosinski, K.G. Haynes, M.E. Clough, and G.C. Yencho. 2011b. QTL mapping of internal heat necrosis in tetraploid potato. Theoretical and Applied Genetics 122: 129–142. doi:10.1007/s00122-010-1429-z.

    Article  CAS  PubMed  Google Scholar 

  • Mendiburu, F. 2014. agricolae: Statistical Procedures for Agricultural Research (version R package version 1.1-7).

  • Navarro, F.M., B.D. Bowen, H.I. Groza, A.J. Bussan, J. Jiang, and J.P. Palta. 2013. Lelah: a new potato chipping variety with excellent long storage ability. American Journal of Potato Research 90: 142.

    Google Scholar 

  • Navarro, F.M., B.D. Bowen, H.I. Groza, A.J. Bussan, J. Jiang, and J.P. Palta. 2012a. Nicolet: a new long storage potato chipping variety with high yield potential. American Journal of Potato Research 89: 42.

    Google Scholar 

  • Navarro, F.M., B.D. Bowen, H.I. Groza, A.J. Bussan, J. Jiang, and J.P. Palta. 2012b. Tundra: a new long storage potato chipping variety with consistently high specific gravity. American Journal of Potato Research 89: 42.

    Google Scholar 

  • Nei, M. 1987. Molecular Evolutionary Genetics, Reprintth ed. New York: Columbia University Press.

    Google Scholar 

  • Novy, R.G., D.L. Corsini, S.L. Love, J.J. Pavek, A.R. Mosley, S.R. James, D.C. Hane, et al. 2002. Bannock Russet: a dual-purpose, russet potato cultivar with high U. S. No. 1 yield and multiple disease resistances. American Journal of Potato Research 79: 147–153. doi:10.1007/BF02881524.

    Article  Google Scholar 

  • Novy, R.G., J.L. Whitworth, J.C. Stark, B.A. Charlton, S. Yilma, N.R. Knowles, M.J. Pavek, et al. 2011. Palisade Russet: a late blight resistant potato cultivar having a low incidence of sugar ends and high specific gravity. American Journal of Potato Research 89: 89–101. doi:10.1007/s12230-011-9224-1.

    Article  Google Scholar 

  • Novy, R.G., J.L. Whitworth, J.C. Stark, S.L. Love, D.L. Corsini, J.J. Pavek, M.I. Vales, et al. 2008. Premier Russet: a dual-purpose, potato cultivar with significant resistance to low temperature sweetening during long-term storage. American Journal of Potato Research 85: 198–209. doi:10.1007/s12230-008-9013-7.

    Article  Google Scholar 

  • Novy, Richard G., Gary A. Secor, Bryce L. Farnsworth, Jim H. Lorenzen, Edna T. Holm, Duane A. Preston, Neil C. Gudmestad, and Joseph R. Sowokinos. 1998. NorValley: a white-skinned chipping cultivar with cold-sweetening resistance. American Journal of Potato Research 75: 101–105. doi:10.1007/BF02883884.

    Article  Google Scholar 

  • Novy, R.G., J.L. Whitworth, J.C. Stark, S.L. Love, D.L. Corsini, J.J. Pavek, M.I. Vales, et al. 2010. Clearwater Russet: a dual-purpose potato cultivar with cold sweetening resistance, high protein content, and low incidence of external defects and sugar ends. American Journal of Potato Research 87: 458–471. doi:10.1007/s12230-010-9148-1.

    Article  CAS  Google Scholar 

  • Rak, K., F.M. Navarro, and J.P. Palta. 2013. Genotype × Storage environment interaction and stability of potato chip color: implications in breeding for cold storage chip quality. Crop Science 53: 1944–1952. doi:10.2135/cropsci2013.02.0089.

    Article  Google Scholar 

  • Development Core Team, R. 2011. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ross, H. 1986. Potato Breeding - Problems and Perspectives. Berlin and Hamburg: Verlag Paul Parey.

    Google Scholar 

  • Shallenberger, R.S., Ora Smith, and R.H. Treadway. 1959. Food color changes, role of the sugars in the browning reaction in potato chips. Journal of Agricultural and Food Chemistry 7: 274–277. doi:10.1021/jf60098a010.

    Article  CAS  Google Scholar 

  • Tai, G.C.C., and W.K. Coleman. 1999. Genotype × environment interaction of potato chip colour. Canadian Journal of Plant Science 79: 433–438. doi:10.4141/P98-109.

    Article  Google Scholar 

  • Thompson, A.L., B.L. Farnsworth, N.C. Gudmestad, G.A. Secor, D.A. Preston, J.R. Sowokinos, M. Glynn, and H. Hatterman-Valenti. 2008. Dakota diamond: an exceptionally high yielding, cold chipping potato cultivar with long-term storage potential. American Journal of Potato Research 85: 171–182. doi:10.1007/s12230-008-9009-3.

    Article  Google Scholar 

  • Thompson, A.L., R.G. Novy, B.L. Farnsworth, G.A. Secor, N.C. Gudmestad, J.R. Sowokinos, E.T. Holm, J.H. Lorenzen, and D. Preston. 2005. Dakota Pearl: an attractive, bright white-skinned, cold-chipping cultivar with tablestock potential. American Journal of Potato Research 82: 481–488. doi:10.1007/BF02872226.

    Article  Google Scholar 

  • van Berloo, R., R.C.B. Hutten, H.J. van Eck, and R.G.F. Visser. 2007. An online potato pedigree database resource. Potato Research 50: 45–57. doi:10.1007/s11540-007-9028-3.

    Article  Google Scholar 

  • Wickham, H. 2009. ggplot2: elegant graphics for data analysis. New York: Springer.

  • Wright, S. 1922. Coefficients of Inbreeding and Relationship. The American Naturalist.

  • Zorrilla, C., F. Navarro, S. Vega, J. Bamberg, and J. Palta. 2014. Identification and selection for tuber calcium, internal quality and pitted scab in segregating “Atlantic” x “Superior” reciprocal tetraploid populations. American Journal of Potato Research 91: 673–687. doi:10.1007/s12230-014-9399-3.

    Article  Google Scholar 

Download references

Acknowledgments

This research was completed by Kyle Rak as a part of his PhD dissertation. He was supported by fellowships from Monsanto Company and the Wisconsin Potato and Vegetable Growers Association. This work was supported in part by a grant from USDA-NIFA and the University of Wisconsin-Madison College of Agriculture and Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Rak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rak, K., Palta, J.P. Influence of Mating Structure on Agronomic Performance, Chip Fry Color, and Genetic Distance Among Biparental Tetraploid Families. Am. J. Potato Res. 92, 518–535 (2015). https://doi.org/10.1007/s12230-015-9466-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-015-9466-4

Keywords

Navigation