Skip to main content

Advertisement

Log in

Evaluation of Nitrogen Supply Rate Measured by in situ Placement of Plant Root Simulator™ Probes as a Predictor of Nitrogen Supply from Soil and Organic Amendments in Potato Crop

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Nitrogen (N) supply from organic sources to the potato (Solanum tuberosum L.) crop is difficult to predict and to synchronize with crop demand. In this study, Plant Root Simulator™ (PRS™) probes were evaluated as a tool for prediction of N supply from two rates (300 vs. 600 kg N ha−1) of either a hog manure-sawdust compost (HMC) or a pelletized dehydrated poultry manure (NW) in Atlantic Canada. The cumulative PRS mineral N supply rate (PRS-N) measured for the period of 31 days after planting (DAP), soil mineral N at 10 DAP and soil NO3-N at 31 DAP were closely related to plant N uptake (PNU) (r = 0.77, 0.71 and 0.73, respectively; P < 0.001) and PNU plus soil mineral N to 30 cm depth at tuber harvest (PNU + SMNh) (r = 0.77, 0.81 and 0.74, respectively; P < 0.001). The supply of N from organic sources to a potato crop can be predicted by PRS-N early in the growing season.

Resumen

El suministro de nitrógeno (N) a partir de fuentes orgánicas al cultivo papa (Solanum tuberosum L.) es difícil de predecir y de sincronizar con la demanda del cultivo. En este estudio, se evaluaron las sondas Plant Root Simulator™ (PRS™) como una herramienta de predicción del suministro de N a partir de dos dosis (300 vs. 600 kg N ha-1) de compost de estiércol de cerdo y aserrín (HMC) o gránulos comprimidos de estiércol deshidratado de aves de corral (NW) en la costa atlántica de Canadá. La tasa acumulada de suministro de N mineral PRS (N-PRS) medida para el período de 31 días después de la siembra (DAP), de N mineral del suelo a 10 DAP y de NO3-N del suelo a 31 DAP están estrechamente relacionadas con la absorción de N por la planta (PNU) ( r = 0.77, 0.71 y 0.73, respectivamente, P < 0.001) y PNU más el N mineral del suelo a 30 cm. de profundidad a la cosecha del tubérculo (PNU + SMNh) (r = 0.77, 0.81 y 0.74, respectivamente, P < 0.001). Se puede predecir el suministro de N a partir de fuentes orgánicas al cultivo de papa mediante PRS-N temprano en la temporada de crecimiento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DAP:

Days after planting

HMC300 and HMC600:

Hog manure-sawdust compost at application rate of 300 and 600 kg total N ha−1, respectively

NW300 and NW600:

Pelletized dehydrated poultry manure (Nutriwave) at application rate of 300 and 600 kg total N ha−1, respectively

PNU:

Total plant N uptake measured at vine mechanical removal

PNU + SMNh :

Total plant N uptake measured at vine mechanical removal plus soil mineral N in 0–30 cm depth at tuber harvest

PRS-N, PRS-NH4 and PRS-NO3 :

Total N, NH4-N and NO3-N supply rates measured using Plant Root Simulator™ probes buried in situ, respectively

SMN:

Soil mineral N at 0–30 cm depth

SMNh :

Soil mineral N at 0–30 cm depth measured at tuber harvest

SMNp :

Soil mineral N at 0–30 cm depth measured before planting

References

  • Abrams, M.M. and W.M. Jarrel. 1992. Bioavailability index for phosphorus using ion exchange resin-impregnated membranes. Soil Science Society of America Journal 56: 1532–1537.

    CAS  Google Scholar 

  • Beauchamp, E.G. 1986. Availability of nitrogen from three manures to corn in the field. Canadian Journal of Soil Science 66: 713–720.

    Google Scholar 

  • Beauchamp, E.G. and J.W. Paul. 1989. A simple model to predict manure N availability to crops in the field. In Nitrogen in organic wastes applied to soils, ed. J.A. Hansen and K. Henriken, 140–149. Boston, MA. USA: Harcourt Brace Jovanovich Publ.

    Google Scholar 

  • Bélanger, G., J.R. Walsh, J.E. Richards, P.H. Milburn, and N. Ziadi. 2001. Predicting nitrogen fertilizer requirements of potatoes in Atlantic Canada with soil nitrate determination. Canadian Journal of Soil Science 81: 535–544.

    Google Scholar 

  • Broadbent, F.F. 1984. Plant use of soil nitrogen. In Nitrogen in crop production, ed. R.D. Haulk, 171–182. Madison WI, USA: ASA, CSSA, and SSSA.

    Google Scholar 

  • Claassen, N., and B. Steingrobe. 1999. Mechanistic simulation models for a better understanding of nutrient uptake from soil. In Mineral nutrition of crops: Fundamental mechanisms and implications, ed. Z. Rengel, 327–367. The Haworth.

  • Dahnke, W.C. and G.V. Johnson. 1990. Testing soils for available nitrogen. In Soil testing and plant analysis, ed. R.L. Westerman, 127–139. WI, USA: SSSA, Madison.

    Google Scholar 

  • Environment Canada. 2008. climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html, verified 8 September 2008.

  • Flowers, T.H. and P.W. Arnold. 1983. Immobilization and mineralization of nitrogen in soils incubated with pig slurry or ammonium sulphate. Soil Biology and Biochemistry 15: 329–335.

    Article  Google Scholar 

  • Greenwood, D.J. 1986. Prediction of nitrogen fertilizer needs of arable crops. Advances in Plant Nutrition 2: 1–61.

    Google Scholar 

  • Griffin, T.S. and O.B. Hesterman. 1991. Potato response to legume and fertilizer N sources. Agronomy Journal 83: 1004–1012.

    Google Scholar 

  • Hadas, A., B. Bar-Yosef, S. Davidov, and M. Sofer. 1983. Effect of pelleting, temperature, and soil type on mineral nitrogen release from poultry and dairy manures. Soil Science Society of America Journal 47: 1129–1133.

    Article  Google Scholar 

  • Hangs, R.D., K.J. Greer, and C.A. Sulewski. 2004. The effect of interspecific competition on conifer seedling growth and nitrogen availability measured using ion-exchange membranes. Canadian Journal of Forest Research 34: 754–761.

    Article  Google Scholar 

  • Hergert, G.W. 1987. Status of residual nitrate-nitrogen soil tests in the United States of America. In Soil testing: sampling, correlation, calibration, and interpretation, ed. J.R. Brown, 73–88. Wisconsin, USA: SSSA Inc, Madison.

    Google Scholar 

  • Johnson, D.W., P.S.J. Verburg, and J.A. Arnone. 2005. Soil extraction, ion exchange resin, and ion exchange membrane measures of soil mineral nitrogen during incubation of a tallgrass prairie soil. Soil Science Society of America Journal 69: 260–265.

    CAS  Google Scholar 

  • Lynch, D.H., Z. Zheng, B.J. Zebarth, and R.C. Martin. 2008. Organic amendment effects on tuber yield, plant N uptake and soil mineral N under organic potato production. Renewable Agriculture and Food System 23: 250–259.

    Google Scholar 

  • Ma, B.L. and T.Y. Wu. 2008. Plant-available nitrogen in the soil: Relationship between pre-plant and pre-sidedress nitrate tests for corn production. Journal of Plant Nutrition and Soil Science 171: 458–465.

    Article  CAS  Google Scholar 

  • MacDougall, J.I., C. Veer, and F. Wilson. 1988. Soils of Prince Edward Island. Ottawa, ON: Research branch, Agriculture Canada.

    Google Scholar 

  • Magdoff, F. 1991. Understanding the Magdoff pre-sidedress nitrate test for corn. Journal of Production Agriculture 4: 297–305.

    Google Scholar 

  • Ojala, J.C., J.C. Stark, and G.E. Kleinkopf. 1990. Influence of irrigation and N management on potato yield and quality. American Potato Journal 67: 29–44.

    Article  Google Scholar 

  • Qian, P. and J.J. Schoenau. 1995. Assessing soil nitrogen mineralization from soil organic matter using anion exchange membrane. Fertilizer Resarch 40: 143–148.

    Article  Google Scholar 

  • Qian, P. and J.J. Schoenau. 2000. Use of ion exchange membrane to assess soil N supply to canola as affected by addition of liquid swine manure and urea. Canadian Journal of Soil Science 80: 213–218.

    Google Scholar 

  • Qian, P. and J.J. Schoenau. 2002. Availability of nitrogen in solid manure amendments with different C:N ratios. Canadian Journal of Soil Science 81: 219–225.

    Google Scholar 

  • Qian, P. and J.J. Schoenau. 2005. Use of ion-exchange membrane to assess nitrogen-supply power of soils. Journal of Plant Nutrition 28: 2193–2200.

    Article  CAS  Google Scholar 

  • Porter, G.A. and J.A. Sisson. 1991. Response of Russet Burbank and Shepody potatoes to N fertilizer in two cropping systems. American Potato Journal 68: 425–443.

    Article  Google Scholar 

  • Rodrigues, M.A. 2004. Establishment of continuous critical levels for indices of plant and presidedress soil nitrogen status in the potato crop. Communication in Soil Science and Plant Analysis 35: 2067–2085.

    Article  CAS  Google Scholar 

  • Sharifi, M., B.J. Zebarth, D.L. Burton, C.A. Grant, and J.M. Cooper. 2007a. Evaluation of some indices of potentially mineralizable nitrogen in soil. Soil Science Society of America Journal 71: 1233–1239.

    Article  CAS  Google Scholar 

  • Sharifi, M., B.J. Zebarth, D.L. Burton, C.A. Grant, G.A. Porter, J.M. Cooper, Y. Leclerc, G. Moreau, and W.J. Arsenault. 2007b. Evaluation of laboratory-based measures of soil mineral nitrogen and potentially mineralizable nitrogen as predictors of field-based estimates of soil nitrogen supply in potato production. Plant and Soil 301: 203–214.

    Article  CAS  Google Scholar 

  • Soper, R.J. and P.M. Huang. 1963. The effect of nitrate nitrogen in the soil profile on the response of barley to fertilizer nitrogen. Canadian Journal of Soil Science 43: 350–358.

    Article  CAS  Google Scholar 

  • Webb, K.T., R.L. Tompson, G.J. Beke, and J.L. Nowland. 1991. Soils of Colchester county, Nova Scotia, Report No 19, Nova Scotia Soil Survey. Research Branch, Agriculture Canada, Ottawa, ON, Canada.

  • Western Ag Innovations Inc. 2008. Plant Root Simulator (PRS TM ) Operations Manual. 411 Downey Road, Suite 3, Canada, 21 pp. http://www.westernag.ca/innov/technical_1.php

  • Zebarth, B.J., Y. Leclerc, G. Moreau, R. Gareau, and P.H. Milburn. 2003. Soil inorganic nitrogen content in commercial potato fields in New Brunswick. Canadian Journal of Soil Science 83: 425–429.

    CAS  Google Scholar 

  • Zebarth, B.J. and P.H. Milburn. 2003. Spatial and temporal distribution of soil inorganic nitrogen concentration in potato hills. Canadian Journal of Soil Science 83: 183–195.

    Google Scholar 

  • Zebarth, B.J., C.F. Drury, N. Tremblay, and A.N. Cambouris. 2009. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Canadian Journal of Soil Science 89: 113–132.

    Article  CAS  Google Scholar 

  • Zebarth, B.J., Y. Leclerc, G. Moreau, J.B. Sanderson, W.J. Arsenault, E. Botha, and G. Wang-Pruski. 2005. Estimation of soil nitrogen supply in potato fields using a plant bioassay approach. Canadian Journal of Soil Science 85: 377–386.

    CAS  Google Scholar 

  • Zebarth, B.J. and J.W. Paul. 1997. Growing season nitrogen dynamics in manured soils in south coastal British Columbia: Implications for a soil nitrate test for silage corn. Canadian Journal of Soil Science 77: 67–76.

    Google Scholar 

  • Zebarth, B.J. and C.J. Rosen. 2007. Research perspective on nitrogen BMP development for potato. American Journal of Potato Research 84: 3–18.

    Article  Google Scholar 

  • Ziadi, N., R.R. Simard, G. Allard, and J. Lafond. 1999. Field evaluation of anion exchange membranes as a N soil testing method for grasslands. Canadian Journal of Soil Science 79: 281–294.

    Google Scholar 

Download references

Acknowledgments

Research funding was provided by the Prince Edward Island Dept. of Agriculture and Forestry, the New Brunswick Dept. of Agriculture, Fisheries and Aquaculture, Advancing Canadian Agriculture and Agri-Food (ACAAF) program, Organic Agriculture Centre of Canada at NSAC, and Canada Research Chairs program. The authors wish to thank F. Dollar, owner of Kentdale Farms, Winslow, for his participation in this study. Excellent field technical assistance was provided by K. MacNeil, A. Runnels, H. Purves, B. van de Pol and S. Urbaniak. Recommendations and advice from Dr. A. Hammermeister are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Sharifi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharifi, M., Lynch, D.H., Zebarth, B.J. et al. Evaluation of Nitrogen Supply Rate Measured by in situ Placement of Plant Root Simulator™ Probes as a Predictor of Nitrogen Supply from Soil and Organic Amendments in Potato Crop. Am. J. Pot Res 86, 356–366 (2009). https://doi.org/10.1007/s12230-009-9090-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-009-9090-2

Keywords

Navigation