Skip to main content
Log in

Macrophyte assemblages in the aquatic-terrestrial transitional zone of oxbow lakes in the Danube floodplain (Austria)

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The Lobau wetland and oxbow ensemble is part of the large Danube River floodplain area between Vienna (Austria) and Bratislava (Slovakia). The Danube River regulation scheme implemented in the late 19th century considerably affected the Lobau area, which is part of the Danube National Park today. Terrestrialization processes in the floodplain started with the river regulation and pose an increasing threat to the aquatic and wetland vegetation of this ecosystem. Former vegetation studies were either directed toward phytosociological description of associations or to a general vegetation inventory and mapping, where transitions between vegetation types are not accounted for. Our purpose is to provide a detailed insight into the vegetation zonation pattern along the aquatic-terrestrial inundation gradient in the Lobau floodplain area. We sampled a total of 49 belt transects. Samples in each transect were classified into groups using two-way indicator species analysis (TWINSPAN). Resulting groups of all transects were subjected to fuzzy c-mean clustering (FCM), defining ‘community types’ by means of indicator species analysis (ISA). We found 36 significant indicator species typifying 14 community types. Nine types belong to the shoreline vegetation and five types characterize the aquatic habitats. In addition to these community types, two transitional zones were found, one defined as open water/wetland transition and one as wetland/upland transition. Along the aquatic-terrestrial environmental gradient, different floristic and quantitative relations of community types and transition zones were identified. Finally, the importance of such a fine-scale description of zonation patterns along the inundation gradient is discussed in relation to long-term monitoring programmes as the basis for rehabilitation or wetland conservation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baart I, Gschöpf C, Blaschke AP, Preiner S, Hein T (2010) Prediction of potential macrophyte development in response to restoration measures in an urban riverine wetland. Aquatic Bot 93:153–162

    Article  Google Scholar 

  • Baart I, Hohensinner S, Zsuffa I, Hein T (2013) Supporting analysis of floodplain restoration options by historical analysis. Environm Sci Policy 34:92–102

    Article  Google Scholar 

  • Barta V, Schmidt-Mumm U, Janauer GA (2009) Adapting floodplain connectivity conditions – a prerequisite for sustaining aquatic macrophyte diversity in the UNESCO Biosphere Reserve Lobau (Austria). Ecohydrol & Hydrobiol 9:73–81

    Article  Google Scholar 

  • Bastin L, Fisher P, Bacon MC, Arnot C, Hughes MJ (2007) Reliability of vegetation community information derived using Decorana ordination and Fuzzy c-means clustering. In Morris A, Kokhan S (eds) Geographic uncertainty in environmental security. Springer, Dordrecht. NATO science for peace and security series: C, Environmental security, pp 53–74

  • Belbin L, McDonald C (1993) Comparing three classification strategies for use in ecology. J Veg Sci 4:341–348

    Article  Google Scholar 

  • Biondi E, Feoli E, Zuccarello V (2004) Modelling environmental responses of plant associations: A review of some critical concepts in vegetation study. Crit Rev Pl Sci 23:149–156

    Article  Google Scholar 

  • Bondar E, Kucera-Hirzinger V, Preiner S, Weigelhofer G, Schiemer F, Hein T (2007) The impact of an artificial water enhancement scheme on phosphorus dynamics in an urban floodplain system in Vienna (Austria). Int Rev Hydrobiol 92:413–427

    Article  CAS  Google Scholar 

  • Bouxin G (2005) Ginkgo, a multivariate analysis package. J Veg Sci 16:355–359

    Article  Google Scholar 

  • Casper SJ, Krausch H (1980) Süßwasserflora von Mitteleuropa. Tl. 1: Lycopodiaceae bis Orchidaceae., Gustav Fischer Verlag, Stuttgart Bd. 23

  • Casper SJ, Krausch H (1981) Süßwasserflora von Mitteleuropa. Tl. 2: Saururaceae bis Asteraceae, Fischer; Spektrum Akademischer Verlag, Heidelberg Bd. 24

  • Collins SL, Glenn SM, Roberts DW (1993) The hierarchical continuum concept. J Veg Sci 4:149–156

    Article  Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetland plants. Biology and ecology, CRC Press, Boca Raton, Fla.

    Book  Google Scholar 

  • Cuadras CM, Fortiana J, Oliva F (1997) The proximity of an individual to a population with applications in Discriminant Analysis. J Classific 14:117–136

    Article  Google Scholar 

  • Dale MB (1988) Some fuzzy approaches to phytosociology: Ideals and instances. Folia Geobot Phytotax 23:239–274

    Article  Google Scholar 

  • De Cáceres M, Font X, Oliva F (2010) The management of vegetation classifications with fuzzy clustering. J Veg Sci 21:1138–1151

    Article  Google Scholar 

  • Del Moral R (1975) Vegetation clustering by means of Isodata: Revision by multiple discriminant analysis. Vegetatio 29:179–190

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Englmaier P, Isda M (2003) Die Ökotone des Flusskoridors aus der Sicht der Vegetation. In Janauer GA, Hary N (eds) Ökotone Donau - March. Wagner, Innsbruck. Veröffentlichungen des Österreichischen MaB-Programmes 19, pp 223–266

  • Equihua M (1990) Fuzzy clustering of ecological data. J Ecol 78:519–534

    Article  Google Scholar 

  • Escudero A, Pajarón S (1994) Numerical syntaxonomy of the Asplenietalia petrarchae in the Iberian Peninsula. J Veg Sci 5:205–214

    Article  Google Scholar 

  • Fischer MA, Oswald K, Adler W (2008) Exkursionsflora für Österreich, Liechtenstein und Südtirol. 3., verb. Aufl. der “Exkursionsflora von Österreich” (1994), OÖ Landesmuseum, Linz

  • Font X, De Cáceres M, García R (2006) Ginkgo, a multivariate analysis tool, Department of Plant Biology, University of Barcelona. Available at: http://biodiver.bio.ub.es/vegana/index.html

  • Funk A, Reckendorfer W, Kucera-Hirzinger V, Raab R, Schiemer F (2009) Aquatic diversity in a former floodplain: Remediation in an urban context. Ecol Engin 35:1476–1484

    Article  Google Scholar 

  • Funk A, Gschöpf C, Blaschke AP, Weigelhofer G, Reckendorfer W (2013) Ecological niche models for the evaluation of management options in an urban floodplain—conservation vs. restoration purposes. Environm Sci Policy 34:79–91

    Article  Google Scholar 

  • Gauch HG, Whittaker RH (1981) Hierarchical classification of community data. J Ecol 69:537–557

    Article  Google Scholar 

  • Gower JC, Ross GTS (1969) Minimum spanning trees and single linkage cluster analysis. J Roy Statist Soc, Ser C 18:54–64

    Google Scholar 

  • Hein T, Blaschke AP, Haidvogl G, Hohensinner S, Kucera-Hirzinger V, Preiner S, Reiter K, Schuh B, Weigelhofer G, Zsuffa I (2006) Optimised management strategies for the Biosphere reserve Lobau, Austria - based on a multi criteria decision support system. Ecohydrol & Hydrobiol 6:25–36

    Article  Google Scholar 

  • Hill MO (1979) TWINSPAN – a FORTRAN program for arranging multivariate data in an ordered two way table by classification of the individuals and the attributes., Cornell University, Department of Ecology and Systematics, Ithaca, New York

    Google Scholar 

  • Hoagland BW, Collins SL (1997) Gradient models, gradient analysis, and hierarchical structure in plant communities. Oikos 78:23–30

    Article  Google Scholar 

  • Hohensinner S, Herrnegger M, Blaschke AP, Habereder C, Haidvogl G, Hein T, Jungwirth M, Weiß M (2008) Type-specific reference conditions of fluvial landscapes: A search in the past by 3D-reconstruction. Catena 75:200–215

    Article  Google Scholar 

  • Hohensinner S, Lager B, Sonnlechner C, Haidvogl G, Gierlinger S, Schmid M, Krausmann F, Winiwarter V (2013) Changes in water and land: the reconstructed Viennese riverscape from 1500 to the present. Water Hist 5:145–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland HM (1996) Wetlands and environmental gradients. In Mulamoottil G, Warner BG (eds) Wetlands. Environmental gradients, boundaries, and buffers. CRC Press, Boca Raton, pp 19-43.

    Google Scholar 

  • Holland HM, Whigham DF, Gopal B (1990) The characteristics of wetland ecotones. In Naiman RJ, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones. The Parthenon Publishing Group, Carnforth, U.K. Man and the Biosphere Series 4, pp 171–198

  • Hrivnák R (2005) Effect of ecological factors on the zonation of wetland vegetation. Acta Soc Bot Poloniae 74:73–81

    Article  Google Scholar 

  • Janauer GA (2003) Makrophyten der Augewässer. In Janauer GA, Hary N (eds) Ökotone Donau - March. Wagner, Innsbruck. Veröffentlichungen des Österreichischen MaB-Programmes 19, pp 156–200

  • Janauer GA (2006) Ecohydrological control of macrophytes in floodplain lakes. Ecohydrol & Hydrobiol 6:19–24

    Article  Google Scholar 

  • Janauer GA, Schmidt-Mumm U, Reckendorfer W (2012) The macrophyte – floodplain habitat relationship: indicator species, diversity and dominance. Sci Ann Danube Delta Inst 18:43–48

    Google Scholar 

  • Janauer GA, Schmidt-Mumm U, Reckendorfer W (2013) Ecohydraulics and aquatic macrophytes: assessing the relationship in river floodplains. In Maddock I, Harby A, Kemp P, Wood PJ (eds) Ecohydraulics. An Integrated Approach. Wiley-Blackwell, Chichester, pp 245–259

    Chapter  Google Scholar 

  • Jensén S, van der Maarel E (1980) Numerical approaches to lake classification with special reference to macrophyte communities. Vegetatio 42:117–128

    Article  Google Scholar 

  • Keddy PA (2000) Wetland ecology. Principles and conservation, Univ. Press, Cambridge. Cambridge studies in ecology

  • Kent M (2012) Vegetation description and data analysis. A practical approach. 2. ed., Wiley, Chichester, West Sussex

  • Kirschner AKT, Riegl B, Velimirov B (2001) Degradation of emergent and submerged macrophytes in an oxbow lake of an embanked backwater system: Implications for the terrestrialization process. Int Rev Hydrobiol 86:555–571

    Article  Google Scholar 

  • Kohler A, Janauer GA (1995) Zur Methodik der Untersuchung von aquatischen Makrophyten in Fließgewässern. In Steinberg C, Bernhardt H, Klapper H (eds) Handbuch angewandte Limnologie. Ecomed, Landsberg/Lech VIII-1.1.3, pp 1–22

  • Margel H (1973) Pflanzengesellschaften und ihre standortgebundene Verbreitung in teilweise abgedämmten Donauauen (Untere Lobau). Verh Zool-Bot Ges Österreich 113:5–52

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities, MjM Software Design, Gleneden Beach, Oregon, U.S.A.

    Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ORD. Multivariate Analysis of Ecological Data. Version 6, MjM Software Design, Gleneden Beach, Oregon, U.S.A.

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands. 4th ed, Wiley, Hoboken, NJ

    Google Scholar 

  • Moraczewski IR (1993) Fuzzy logic for phytosociology: 1. Syntaxa as vague concepts. Vegetatio 106:1–11

    Article  Google Scholar 

  • Olano JM, Loidi JJ, González A, Escudero A (1998) Improving the interpretation of fuzzy partitions in vegetation science with constrained ordinations. Pl Ecol 134:113–118

    Article  Google Scholar 

  • Pall K, Kum G (2006) Die Makrophytenvegetation in der Unteren Lobau - Voruntersuchung. Wiss Reihe Nationalpark Donau-Auen 3:1–88

    Google Scholar 

  • Podani J (1990) Comparison of fuzzy classifications. Coenoses 5:17–21

    Google Scholar 

  • Podani J (2000) Introduction to the exploration of multivariate biological data, Backhuys, Leiden

    Google Scholar 

  • Podani J (2001) SYN-TAX 2000. Computer programs for data analysis in ecology and systematics. User's manual, Scientia Publishing, Budapest

    Google Scholar 

  • Reckendorfer W, Funk A, Gschöpf C, Hein T, Schiemer F, Arnott S (2013) Aquatic ecosystem functions of an isolated floodplain and their implications for flood retention and management. J Appl Ecol 50:119–128

    Article  CAS  Google Scholar 

  • Roberts DW (1989) Fuzzy systems vegetation theory. Vegetatio 83:71–80

    Article  Google Scholar 

  • Rotter D (1999) Die Verlandungsdynamik der Donaualtwässer bei Wien. Stapfia 64:163–208

    Google Scholar 

  • Sârbu A, Janauer GA, Schmidt-Mumm U, Filzmoser P, Smarandache D, Pascale G (2011) Characterisation of the potamal Danube River and the Delta: connectivity determines indicative macrophyte assemblages. Hydrobiologia 671:75–93

    Article  Google Scholar 

  • Schiemer F, Baumgartner C, Tockner K (1999) Restoration of floodplain rivers: The ‘Danube restoration project’. Regulat Rivers Res Managem 15:231–244

    Article  Google Scholar 

  • Schmidt-Mumm U, Janauer GA (2014) Seasonal dynamics of the shoreline vegetation in the Zapatosa floodplain lake complex, Colombia. Revista Biol Trop 62(3):1073–1097

    Article  Google Scholar 

  • Schratt-Ehrendorfer L (1999) Geobotanisch-ökologische Untersuchungen zum Indikatorwert von Wasserpflanzen und ihren Gesellschaften in Donaualtwässern bei Wien. Stapfia 64:23–161

    Google Scholar 

  • Schratt-Ehrendorfer L (2000) Entwicklungstendenzen von Vegetationseinheiten an Sonderstandorten der Donauauen bei Wien (Untere Lobau). Verh Zool-Bot Ges Österreich 137:137–145

    Google Scholar 

  • Sculthorpe CD (1985) The biology of aquatic vascular plants, Koeltz, Königstein

    Google Scholar 

  • Shipley B, Keddy PA (1987) The individualistic and community-unit concepts as falsifiable hypotheses. Vegetatio 69:47–55

    Article  Google Scholar 

  • Sommerwerk N, Hein T, Schneider-Jakoby M, Baumgartner C, Ostojic A, Paunovic M, Bloesch J, Siber R, Tockner K (2009) The Danube River Basin. In Tockner K, Uehlinger U, Robinson CT (eds) Rivers of Europe. Elsevier, Amsterdam, pp 59–112

    Chapter  Google Scholar 

  • Stohlgren TJ, Chase TN, Pielke RA, Sr, Kittel, Timothy G. F., Baron JS (1998) Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas. Global Change Biol 4:495–504

    Article  Google Scholar 

  • Strausz V, Janauer GA (2007) Impact of the 2002 extreme flood on aquatic macrophytes in a former side channel of the River Danube (Austria). Belg J Bot 140:17–24

    Google Scholar 

  • The Plant List (2010) The plant list. A working list of all plant species. Version 1. Available at: http://www.theplantlist.org, [accessed: 11 October 2013]

  • van der Maarel E (1990) Ecotones and ecoclines are different. J Veg Sci 1:135–138

    Article  Google Scholar 

  • van der Maarel E, Franklin J (2013) Vegetation ecology: historical notes and outline. In van der Maarel E, Franklin J (eds) Vegetation ecology. Wiley-Blackwell, Hoboken, NJ, pp 1–27

    Chapter  Google Scholar 

  • van der Valk AG (2012) The biology of freshwater wetlands. Ed. 2, Oxford University Press, Oxford. The biology of habitats series

  • van Groenewoud H (1992) The robustness of correspondence, detrended correspondence, and TWINSPAN analysis. J Veg Sci 3:239–246

    Article  Google Scholar 

  • Wagner-Lücker I, Lanz E, Förster M, Janauer GA, Reiter K (2013) Knowledge-based framework for delineation and classification of ephemeral plant communities in riverine landscapes to support EC Habitat Directive assessment. Ecol Inform 14:44–47

    Article  Google Scholar 

  • Weigelhofer G, Hein T, Kucera-Hirzinger V, Zornig H, Schiemer F (2011) Hydrological improvement of a former floodplain in an urban area: Potential and limits. Ecol Engin 37:1507–1514

    Article  Google Scholar 

  • Williams BK (1983) Some observations of the use of discriminant analysis in ecology. Ecology 64:1283–1291

    Article  Google Scholar 

  • Zhang JT, Meng D (2007) Application of fuzzy set ordination and classification to the study of plant communities in Pangquangou Nature Reserve, China. In Elleithy K (ed) Advances and innovations in systems, computing sciences and software engineering. Springer Netherlands, Dordrecht, pp 217–222

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Veronika Barta for field assistance and identification of mosses. We thank three anonymous reviewers and the associate editor of the journal for their valuable comments and suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Schmidt-Mumm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt-Mumm, U., Janauer, G.A. Macrophyte assemblages in the aquatic-terrestrial transitional zone of oxbow lakes in the Danube floodplain (Austria). Folia Geobot 51, 251–266 (2016). https://doi.org/10.1007/s12224-016-9234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-016-9234-3

Keywords

Navigation