Skip to main content

Advertisement

Log in

Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Klebsiella spp. is a commensal gram-negative bacterium and a member of the human microbiota. It is the leading cause of various hospital-acquired infections. The occurrence of multi-drug drug resistance and carbapenemase-producing strains of Klebsiella pneumoniae producing weighty contaminations is growing, and Klebsiella oxytoca is an arising bacterium. Alternative approaches to tackle contaminations led by these microorganisms are necessary as strains enhance opposing to last-stage antibiotics in the way that Colistin. The lytic bacteriophages are viruses that infect and rapidly eradicate bacterial cells and are strain-specific to their hosts. They and their proteins are immediately deliberate as opportunities or adjuncts to antibiotic therapy. There are several reports in vitro and in vivo form that proved the potential use of lytic phages to combat superbug stains of K. pneumoniae. Various reports dedicated that the phage area can be returned to the elimination of multi-drug resistance and carbapenemase resistance isolates of K. pneumoniae. This review compiles our current information on phages of Klebsiella spp. and highlights technological and biological issues related to the evolution of phage-based therapies targeting these bacterial hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ackermann HW (2009) Phage classification and characterization. Methods Mol Biol 501:127–140

    Article  CAS  PubMed  Google Scholar 

  • Anand T, Virmani N, Kumar S et al (2020) Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Glob Antimicrob Resist 21:34–41

    Article  PubMed  Google Scholar 

  • Assafiri O, Song AA, Tan GH et al (2021) Klebsiella virus UPM2146 lyses multiple drug-resistant Klebsiella pneumoniae in vitro and in vivo. PLoS ONE 16:e0245354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363: fnw002

  • Bhattarai Y, Williams BB, Battaglioli EJ et al (2018) Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 23:775-785.e775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briers Y, Walmagh M, Grymonprez B et al (2014a) Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:3774–3784

    Article  PubMed  PubMed Central  Google Scholar 

  • Briers Y, Walmagh M, Van Puyenbroeck V et al (2014b) Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens. mBio 5:e01379–01314

  • Cai R, Wang Z, Wang G et al (2019) Biological properties and genomics analysis of vB_KpnS_GH-K3, a Klebsiella phage with a putative depolymerase-like protein. Virus Genes 55:696–706

    Article  CAS  PubMed  Google Scholar 

  • Canchaya C, Proux C, Fournous G et al (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano EJ, Caflisch KM, Bollyky PL et al (2020) Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin Infect Dis 73:144–151

    Article  Google Scholar 

  • Cao F, Wang X, Wang L et al (2015) Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. Biomed Res Int 2015:752930

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhibber S, Kaur S, Kumari S (2008) Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol 57:1508–1513

    Article  PubMed  Google Scholar 

  • Chhibber S, Nag D, Bansal S (2013) Inhibiting biofilm formation by Klebsiella pneumoniae B5055 using an iron antagonizing molecule and a bacteriophage. BMC Microbiol 13:174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clokie MR, Kropinski AM, Lavigne R (2019) Bacteriophages. Springer

    Book  Google Scholar 

  • Clokie MRJ, Millard AD, Letarov AV et al (2011) Phages in Nature Bacteriophage 1:31–45

    Article  PubMed  Google Scholar 

  • Colavecchio A, Cadieux B, Lo A et al (2017) Bacteriophages Contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family— a review. Front Microbiol 8:1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Corbellino M, Kieffer N, Kutateladze M et al (2019) Eradication of a multi-drug resistant, carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom-made, lytic bacteriophage preparation. Clin Infect Dis 70:1998–2001

    Article  Google Scholar 

  • Cui Z, Shen W, Wang Z et al (2012) Complete genome sequence of Klebsiella pneumoniae phage JD001. J Virol 86:13843–13843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Andrea MM, Marmo P, Henrici De Angelis L et al (2017) φbO1E, a newly discovered lytic bacteriophage targeting carbapenemase-producing Klebsiella pneumoniae of the pandemic Clonal Group 258 clade II lineage. Sci Rep 7:2614–2620

    Article  PubMed  PubMed Central  Google Scholar 

  • d’Herelle FJCRAS (1918) Sur le rôle du microbe filtrant bactériophage dans la dysentérie bacillaire 167:970–972

  • Dąbrowska K (2019) Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med Res Rev 39:2000–2025

    Article  PubMed  PubMed Central  Google Scholar 

  • Dąbrowska K, Abedon ST (2019) Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol Mol Biol Rev 83:e00012-00019

    Article  PubMed  PubMed Central  Google Scholar 

  • De Oliveira DMP, Forde BM, Kidd TJ et al (2020) Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33:e00181-e219

    Article  PubMed  PubMed Central  Google Scholar 

  • Debarbieux L, Pirnay JP, Verbeken G et al (2016) A bacteriophage journey at the European Medicines Agency. FEMS Microbiol Lett 363:fnv225

  • Defraine V, Schuermans J, Grymonprez B et al (2016) Efficacy of artilysin Art-175 against resistant and persistent Acinetobacter baumannii. Antimicrob Agents Chemother 60:3480–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhungana G, Nepal R, Regmi M et al (2021) Pharmacokinetics and pharmacodynamics of a novel virulent Klebsiella phage Kp_Pokalde_002 in a mouse model. Front Cell Infect Microbiol 11:684704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins–application approaches. Curr Med Chem 22:1757–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Düzgüneş N, Sessevmez M, Yildirim M (2021) Bacteriophage therapy of bacterial infections: the rediscovered frontier. Pharmaceuticals 14:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckstein S, Stender J, Mzoughi S et al (2021) Isolation and characterization of lytic phage TUN1 specific for Klebsiella pneumoniae K64 clinical isolates from Tunisia. BMC Microbiol 21:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Effah CY, Sun T, Liu S et al (2020) Klebsiella pneumoniae: an increasing threat to public health. Ann Clin Microbiol Antimicrob 19:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson H, Maciejewska B, Latka A et al (2015) A suggested new bacteriophage genus, “Kp34likevirus”, within the Autographivirinae subfamily of Podoviridae. Viruses 7:1804–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang Q, Zong Z (2022) Lytic phages against ST11 K47 Carbapenem-Resistant Klebsiella pneumoniae and the corresponding phage resistance mechanisms. mSphere 7:e0008022

  • Fayez MS, Hakim TA, Agwa MM et al (2021) Topically applied bacteriophage to control multi-drug resistant Klebsiella pneumoniae infected wound in a rat model. Antibiotics (basel) 10:1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furfaro LL, Payne MS, Chang BJ (2018) Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8:376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordillo Altamirano FL, Barr JJ (2019) Phage therapy in the postantibiotic era. Clin Microbiol Rev 32:e00066-e118

    Article  PubMed  PubMed Central  Google Scholar 

  • Górski A, Borysowski J, Międzybrodzki R (2020) Phage therapy: Towards a successful clinical trial. Antibiotics 9:1–7

    Article  Google Scholar 

  • Górski A, Międzybrodzki R, Borysowski J (2019) Phage therapy: a practical approach. Springer

    Book  Google Scholar 

  • Habibinava F, Soleimani M, Sabouri S et al (2022) Isolating and sequencing vB_Kpn_3, a lytic bacteriophage against multidrug-resistant Klebsiella pneumoniae. Future Microbiol 17:235–249

    Article  CAS  PubMed  Google Scholar 

  • Harper DR (2018) Criteria for selecting suitable infectious diseases for phage therapy. Viruses 10:177

    Article  PubMed  PubMed Central  Google Scholar 

  • Herridge WP, Shibu P, O’Shea J et al (2020) Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J Med Microbiol 69:176–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesse S, Malachowa N, Porter AR et al (2021) Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258. mBio 12:e00034–21

  • Hesse S, Rajaure M, Wall E et al. (2020). Phage resistance in multidrug-resistant Klebsiella pneumoniae st258 evolves via diverse mutations that culminate in impaired adsorption. mBio 11 :e02530–19.

  • Hoyles L, Murphy J, Neve H et al (2015) Klebsiella pneumoniae subsp. pneumoniae-bacteriophage combination from the caecal effluent of a healthy woman. PeerJ 3:e1061

  • Hsu BB, Gibson TE, Yeliseyev V et al (2019) Dynamic modulation of the gut microbiota and metabolome by bacteriophages in a mouse model. Cell Host Microbe 25:803-814.e805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CR, Lin TL, Pan YJ et al (2013) Isolation of a bacteriophage specific for a new capsular type of Klebsiella pneumoniae and characterization of its polysaccharide depolymerase. PLoS ONE 8:e70092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung CH, Kuo CF, Wang CH et al (2011) Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother 55:1358–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman P (2019) Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals 12:35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jault P, Leclerc T, Jennes S et al (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19:35–45

    Article  PubMed  Google Scholar 

  • Komisarova EV, Kislichkina AA, Krasilnikova VM et al (2017) Complete nucleotide sequence of Klebsiella pneumoniae bacteriophage vB_KpnM_KpV477. Genome Announc 5:e00694-e717

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuipers S, Ruth MM, Mientjes M et al (2019) A Dutch case report of successful treatment of chronic relapsing urinary tract infection with bacteriophages in a renal transplant patient. Antimicrob Agents Chemother 64:e01281-e11219

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Harjai K, Chhibber S (2010) Evidence to support the therapeutic potential of bacteriophage Kpn5 in burn wound infection caused by Klebsiella pneumoniae in BALB/c mice. J Microbiol Biotechnol 20:935–941

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Harjai K, Chhibber S (2011) Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol 60:205–210

    Article  PubMed  Google Scholar 

  • Kuptsov NS, Kornienko MA, Gorodnichev RB et al (2020) Efficacy of commercial bacteriophage products against eskape pathogens. Bull Russ State Med Univ 3:18–24

    Google Scholar 

  • Labrie SJ, Samson JE, Moineau S (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8:317–327

    Article  CAS  PubMed  Google Scholar 

  • Latka A, Drulis-Kawa Z (2020) Advantages and limitations of microtiter biofilm assays in the model of antibiofilm activity of Klebsiella phage KP34 and its depolymerase. Sci Rep 10:1–12

    Article  Google Scholar 

  • Law N, Aslam S (2020) Phage Therapy: Primer and Role in the Treatment of MDROs. Curr Infect Dis Rep 22:13

  • Li M, Wang H, Chen L et al (2022) Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice. Virol Sin 37:538–546

    Article  PubMed  PubMed Central  Google Scholar 

  • Li M, Xiao Y, Li P et al (2020) Characterization and genome analysis of Klebsiella phage P509, with lytic activity against clinical carbapenem-resistant Klebsiella pneumoniae of the KL64 capsular type. Arch Virol 165:2799–2806

    Article  CAS  PubMed  Google Scholar 

  • Li N, Zeng Y, Bao R et al (2021) Isolation and characterization of novel phages targeting pathogenic Klebsiella pneumoniae. Front Cell Infect Microbiol 11:792305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Li X, Luo M et al (2018) Risk factors for carbapenem-resistant Klebsiella pneumoniae infection: a meta-analysis. Microb Drug Resist 24:190–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Leung SSY, Huang Y et al (2020) Identification of two depolymerases from phage IME205 and their antivirulent functions on K47 capsule of Klebsiella pneumoniae. Front Microbiol 11:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Loh B, Gondil VS, Manohar P et al (2021) Encapsulation and Delivery of Therapeutic Phages. Appl Environ Microbiol 87:e01979-e2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu B, Yao X, Han G et al (2022) Isolation of Klebsiella pneumoniae Phage vB_KpnS_MK54 and pathological assessment of endolysin in the treatment of pneumonia mice model. Front Microbiol 13:854908

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Geng S, Lu B et al (2021) Isolation, genomic analysis, and preliminary application of a bovine Klebsiella pneumoniae bacteriophage vB_Kpn_B01. Front Vet Sci 8:622049

    Article  PubMed  PubMed Central  Google Scholar 

  • Luong T, Salabarria A-C, Roach DR (2020) Phage therapy in the resistance era: where do we stand and where are we going? Clin Ther 42:1659–1680

    Article  CAS  PubMed  Google Scholar 

  • Maciejewska B, Roszniowski B, Espaillat A et al (2017) Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol 101:673–684

    Article  CAS  PubMed  Google Scholar 

  • Majkowska-Skrobek G, Łątka A, Berisio R et al (2016) Capsule-targeting depolymerase, derived from Klebsiella KP36 phage, as a tool for the development of anti-virulent strategy. Viruses 8:324

    Article  PubMed  PubMed Central  Google Scholar 

  • Majkowska-Skrobek G, Latka A, Berisio R et al (2018) Phage-borne depolymerases decrease Klebsiella pneumoniae resistance to innate defense mechanisms. Front Microbiol 9:2517

    Article  PubMed  PubMed Central  Google Scholar 

  • Majkowska-Skrobek G, Markwitz P, Sosnowska E et al (2021) The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol 23:7723–7740

    Article  CAS  PubMed  Google Scholar 

  • Marques AT, Tanoeiro L, Duarte A et al (2021) Genomic analysis of prophages from Klebsiella pneumoniae clinical isolates. Microorganisms 9:2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin RM, Bachman MA (2018) Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  • McCallin S, Sacher JC, Zheng J et al (2019) Current state of compassionate phage therapy. Viruses 11:343

    Article  PubMed  PubMed Central  Google Scholar 

  • Meatherall BL, Gregson D, Ross T et al (2009) Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. Am J Med 122:866–873

    Article  PubMed  Google Scholar 

  • Mohammadi M, Saffari M, Siadat SD et al (2023) Isolation, characterization, therapeutic potency, and genomic analysis of a novel bacteriophage vB_KshKPC-M against carbapenemase-producing Klebsiella pneumoniae strains (CRKP) isolated from Ventilator-associated pneumoniae (VAP) infection of COVID-19 patients. Ann Clin Microbiol Antimicrob 22:1–25

    Article  Google Scholar 

  • Nilsson AS (2019) Pharmacological limitations of phage therapy. Ups J Med Sci 124:218–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh HK, Cha K, Hwang YJ et al (2019) Complete genome sequence of a novel bacteriophage, PBKP05, infecting Klebsiella pneumoniae. Arch Virol 64:885–888

    Article  Google Scholar 

  • Pacios O, Fernández-García L, Bleriot I et al (2021a) Phenotypic and genomic comparison of Klebsiella pneumoniae lytic phages: vB_KpnM-VAC66 and vB_KpnM-VAC13. Viruses 14:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacios O, Fernández-García L, Bleriot I et al (2021b) Enhanced antibacterial activity of repurposed Mitomycin C and imipenem in combination with the lytic phage vB_KpnM-VAC13 against clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 65:e0090021

    Article  PubMed  Google Scholar 

  • Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 80:629–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan YJ, Lin TL, Chen CC et al (2017) Klebsiella phage ΦK64-1 encodes multiple depolymerases for multiple host capsular types. J Virol 91:e02457-e2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan YJ, Lin TL, Chen YY et al (2019) Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types. Microb Biotechnol 12:472–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan YJ, Lin TL, Lin YT et al (2015) Identification of capsular types in carbapenem-resistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrob Agents Chemother 59:1038–1047

    Article  PubMed  PubMed Central  Google Scholar 

  • Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyra A, Brzozowska E, Pawlik K et al (2017) Tail tubular protein A: a dual-function tail protein of Klebsiella pneumoniae bacteriophage KP32. Sci Rep 7:2223

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman S, Ali Z, Khan M et al (2019) The dawn of phage therapy. Rev Med Virol 29:e2041

    Article  PubMed  Google Scholar 

  • Reyes J, Aguilar AC, Caicedo A (2019) Carbapenem-resistant Klebsiella pneumoniae: microbiology key points for clinical practice. Int J Gen Med 12:437–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo TA, Marr CM (2019) Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev 32:e00001-00019

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Chen Y, Yang Z et al (2020) Characterization and genome sequencing of a novel T7-like lytic phage, kpssk3, infecting carbapenem-resistant Klebsiella pneumoniae. Arch Virol 165:97–104

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Peng Y, Zhang Y et al (2021) Safety and efficacy of a phage, kpssk3, in an in vivo Model of Carbapenem-Resistant Hypermucoviscous Klebsiella pneumoniae Bacteremia. Front Microbiol 12:613356

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh L, Cariappa M, Kaur MJMjafi, (2016) Klebsiella oxytoca: an emerging pathogen? Med J Armed Forces India 72:S59–S61

    Article  PubMed  PubMed Central  Google Scholar 

  • Singla S, Harjai K, Katare OP et al (2015) Bacteriophage-loaded nanostructured lipid carrier: improved pharmacokinetics mediates effective resolution of Klebsiella pneumoniae–induced lobar pneumonia. J Infect Dis 212:325–334

    Article  CAS  PubMed  Google Scholar 

  • Solovieva EV, Myakinina VP, Kislichkina AA et al (2018) Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types. Virus Res 243:10–18

    Article  CAS  PubMed  Google Scholar 

  • Spruit CM, Wicklund A, Wan X et al (2020) Discovery of three toxic proteins of Klebsiella phage fHe-Kpn01. Viruses 12:544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauch E, Lurz R, Beutin L (2001) Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infect Immun 69:7588–7595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng T, Li Q, Liu Z et al (2019) Characterization and genome analysis of novel Klebsiella phage Henu1 with lytic activity against clinical strains of Klebsiella pneumoniae. Arch Virol 164:2389–2393

    Article  CAS  PubMed  Google Scholar 

  • Thiry D, Passet V, Danis-Wlodarczyk K et al (2019) New bacteriophages against emerging lineages ST23 and ST258 of Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae. Viruses 11:411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuon FF, Kruger M, Terreri M et al (2011) Klebsiella ESBL Bacteremia-Mortality and Risk Factors 15:594–598

    Google Scholar 

  • Tzouvelekis LS, Markogiannakis A, Psichogiou M et al (2012) Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25:682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villa L, Feudi C, Fortini D et al (2017) Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom 3:e000110

    PubMed  PubMed Central  Google Scholar 

  • Volozhantsev NV, Myakinina VP, Popova AV et al (2016) Complete genome sequence of novel T7-like virus vB_KpnP_KpV289 with lytic activity against Klebsiella pneumoniae. Arch Virol 161:499–501

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cai R, Wang G et al (2021) Combination therapy of phage vB_KpnM_P-KP2 and Gentamicin combats acute pneumonia caused by K47 serotype Klebsiella pneumoniae. Front Microbiol 12:674068

    Article  PubMed  PubMed Central  Google Scholar 

  • Wintachai P, Naknaen A, Thammaphet J et al (2020) Characterization of extended-spectrum-β-lactamase producing Klebsiella pneumoniae phage KP1801 and evaluation of therapeutic efficacy in vitro and in vivo. Sci Rep 10:1–18

    Article  Google Scholar 

  • Wu N, Zhu T (2021) Potential of therapeutic bacteriophages in nosocomial infection management. Front Microbiol 12:638094

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang R, Xu M et al (2019) A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol 10:2768

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing S, Pan X, Sun Q et al (2017) Complete genome sequence of a novel multidrug-resistant Klebsiella pneumoniae Phage, vB_Kpn_IME260. Genome Announc 5:e00055-e117

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Zhao Y, Qian C et al (2022) The identification of phage vB_1086 of multidrug-resistant Klebsiella pneumoniae and its synergistic effects with ceftriaxone. Microb Pathog 171:105722

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yuan J, Guo C et al (2021) Identification and complete genome of lytic “Kp34likevirus” phage vB_KpnP_Bp5 and therapeutic potency in the treatment of lethal Klebsiella pneumoniae infections in mice. Virus Res 297:198348

    Article  CAS  PubMed  Google Scholar 

  • Zhu W-m, Yuan Z, Zhou H-y (2020) Risk factors for carbapenem-resistant Klebsiella pneumoniae infection relative to two types of control patients: a systematic review and meta-analysis. Antimicrob Resist Infect Control 9:1–3

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Kashan University of Medical Sciences.

Funding

This work was supported by a grant (3150) from the Kashan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Mohammadi M: idea development, data gathering, manuscript writing. Saffari M: idea development, manuscript editing.

Corresponding author

Correspondence to Mehrdad Mohammadi.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Saffari, M. & Siadat, S.D. Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future. Folia Microbiol 68, 357–368 (2023). https://doi.org/10.1007/s12223-023-01046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-023-01046-y

Keywords

Navigation