Skip to main content
Log in

Pyridine Functionalized Polystyrene Supported Cobalt Superfine Fibers as an Efficient and Recyclable Catalyst for Heck Reactions

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Supported cobalt catalysts have attracted more and more attention for their easy separation and recyclability. Herein, cobalt-embedded pyridine functionalized polystyrene superfine fibers were readily fabricated by electrospinning. Then, the pyridine functionalized polystyrene and polystyrene molecules inside the fibers were cross-linked by paraldehyde to improve the fiber stability. The synthesis of pyridine functionalized polystyrene and cross-linking of polystyrene molecules inside the fibers were confirmed by FT-IR spectra. The fiber morphologies were characterized by SEM. The dispersion of cobalt species was analyzed by SEM–EDS, XRD and TEM. Finally, the Heck reactions were employed to evaluate the catalytic performance of this novel fibrous catalyst. The catalysis results show that this novel fiber catalyst exhibited excellent catalytic activity for the Heck reactions of aromatic iodides with alkenes to afford coupling products with yields over 80%. Moreover, due to the embedment of cobalt species and chelation of pyridine groups, this novel fiber catalyst can be reused five times with little loss of catalytic activity. In all, we have developed a highly active and stable supported cobalt catalyst, which holds great potential for green chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data are available from the corresponding authors upon reasonable request.

References

  1. T. Ghosh, S. Bhakta, Adv. Syn. Catal. 362, 5257 (2020)

    Article  Google Scholar 

  2. Y. Bao, L. Shao, G. Xing, C. Qi, Int. J. Biol. Macromol.Macromol. 130, 203 (2019)

    Article  CAS  Google Scholar 

  3. M. Alisha, R.M. Philip, G. Anilkumar, Euro. J. Org. Chem. 2022, e202101384 (2022)

    Article  CAS  Google Scholar 

  4. P.J. Anju, M. Neetha, G. Anilkumar, ChemistrySelect 7, e202103564 (2022)

    Article  CAS  Google Scholar 

  5. A.R. Abdellah, A.B.A. El-Adasy, A.A. Atalla, Micropor. Mesopor. Mat. 339, 111961 (2022)

    Article  CAS  Google Scholar 

  6. T.Z. Liu, S.D. Lee, R.S. Bhatnagar, Toxicol. Lett.. Lett. 4, 469 (1979)

    Article  CAS  Google Scholar 

  7. Y. Ikeda, T. Nakamura, H. Yorimitsu, K. Oshima, J. Am. Chem. Soc. 124, 6514 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. S. Mishra, C.G. Halpani, S. Patel, ChemistrySelect 4, 6913 (2019)

    Article  CAS  Google Scholar 

  9. K.B. Narayanan, N. Sakthivel, S.S. Han, Fiber. Polym. 22, 877 (2021)

    Article  CAS  Google Scholar 

  10. A.R. Hajipour, Z. Khorsandi, Appl. Organomet. Chem.Organomet. Chem. 34, e5398 (2020)

    Article  CAS  Google Scholar 

  11. A.R. Hajipour, Z. Khorsandi, Z. Abeshtiani, Inorg. Chem. Commun.Commun. 107, 107470 (2019)

    Article  CAS  Google Scholar 

  12. Z. Mao, H. Gu, X. Lin, Catalysts 11, 1078 (2021)

    Article  CAS  Google Scholar 

  13. T. Djekić, Z. Zivkovic, A.G.J. van der Ham, A.B. de Haan, Appl. Catal. A. Gen. 312, 144 (2006)

    Article  Google Scholar 

  14. H. Targhan, A. Hassanpour, K. Bahrami, Appl. Organomet. Chem.Organomet. Chem. 33, e5121 (2019)

    Article  Google Scholar 

  15. E. Hariprasad, T.P. Radhakrishnan, ACS Catal.Catal. 2, 1179 (2012)

    Article  CAS  Google Scholar 

  16. Y. Du, S. Wei, M. Tang, M. Ye, H. Tao, C. Qi, L. Shao, Appl. Organomet. Chem.Organomet. Chem. 34, e5619 (2020)

    Article  CAS  Google Scholar 

  17. M.M. Amini, A. Mohammadkhani, A. Bazgir, ChemistrySelect 3, 1439 (2018)

    Article  CAS  Google Scholar 

  18. M. Gao, J. Wang, W. Shang, Y. Chai, W. Dai, G. Wu, N. Guan, L. Li, Catal. Today 410, 237 (2023)

    Article  CAS  Google Scholar 

  19. B. Su, Q. Zhang, L. Shao, S. Zhou, J. Li, Y. Du, C. Qi, J. Phys. Chem. Solids 168, 1108 (2022)

    Article  Google Scholar 

  20. C. Fischer, R. Thede, W. Baumann, H.J. Drexler, A. König, D. Heller, ChemCatChem 8, 352 (2015)

    Article  Google Scholar 

  21. A. Ohtaka, A. Sakon, A. Yasui, T. Kawaguchi, G. Hamasaka, Y. Uozumi, T. Shinagawa, O. Shimomura, R. Nomura, J. Organomet. Chem.Organomet. Chem. 854, 87 (2018)

    Article  CAS  Google Scholar 

  22. N.A. Nemygina, L.Z. Nikoshvili, A.V. Bykov, A.I. Sidorov, V.P. Molchanov, M.G. Sulman, I.Y. Tiamina, B.D. Stein, V.G. Matveeva, E.M. Sulman, L. Kiwi-Minsker, Org. Process Res. Dev. 20, 1453 (2016)

    Article  CAS  Google Scholar 

  23. J. Bartáek, P. Drabina, J. Váňa, M. Sedlák, React. Funct. Polym.Funct. Polym. 137, 123 (2019)

    Article  Google Scholar 

  24. J. Horniakova, T. Raja, Y. Kubota, Y. Sugi, Mol. Catal. 217, 73 (2004)

    Article  CAS  Google Scholar 

  25. T.V. Grayaznova, Y.B. Dudkina, D.R. Islamov, O.N. Kataeva, O.G. Sinyashin, D.A. Vicic, Y.H. Budnikova, J. Organomet. Chem.Organomet. Chem. 785, 68 (2015)

    Article  CAS  Google Scholar 

  26. J. Chen, Z. Yu, C. Li, Y. Lv, S. Hong, P. Hu, Y. Liu, Macromol. Mater. Eng.. Mater. Eng. 307, 2200057 (2022)

    Article  CAS  Google Scholar 

  27. Y. Deng, T. Lu, J. Cui, S.K. Samal, R. Xiong, C. Huang, Sep. Purif. Technol.Purif. Technol. 277, 119623 (2021)

    Article  CAS  Google Scholar 

  28. E. Berber, N. Horzum, B. Hazer, M.M. Demir, Fiber. Polym. 17, 760 (2016)

    Article  CAS  Google Scholar 

  29. G. Mayakrishnan, H. Bang, G. Yuan, C. Yin, K.H. Song, J.S. Lee, I.M. Chung, R. Karvembu, I.S. Kim, Carbohyd. Polym.. Polym. 132, 554 (2015)

    Article  Google Scholar 

  30. B. Zhang, Z. Ye, M. Qin, Q. Wang, Y. Du, C. Qi, L. Shao, J. Appl. Polym. Sci.Polym. Sci. 138, 49666 (2020)

    Article  Google Scholar 

  31. D. Lolla, A. Abutaleb, M.A. Kashfipour, G.G. Chase, Materials 12, 2859 (2019)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. P. Laurienzo, M. Malinconico, G. Mattia, G. Romano, Macromol. Chem. Phys.. Chem. Phys. 207, 1861 (2006)

    Article  CAS  Google Scholar 

  33. L.A. Liu, R.F. Qin, X.F. Fan, K.X. Wang, X.J. Wang, H. Wang, Y.J. Chen, J.T. Wang, Y. Wang, Materials 16, 4409 (2023)

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Y. Du, L. Shao, C. Qi, J. Appl. Polym. Sci.Polym. Sci. 138, e50169 (2021)

    Article  Google Scholar 

  35. A. Ohtaka, T. Yamaguchi, T. Teratani, O. Shimomura, R. Nomura, Molecules 16, 9067 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. X. Dong, Y. Hou, F. Meng, H. Liu, H. Liu, Chin. J. Org. Chem. 37, 1088 (2017)

    Article  CAS  Google Scholar 

  37. D. Kurandina, P. Chuentragool, V. Gevorgyan, Synthesis 51, 985 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A.C. Matsheku, M.C. Maumela, B.C.E. Makhubela, Polyhedron 205, 115280 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 11905132 and 11975157).

Funding

National Natural Science Foundation of China, 11905132, Chenze Qi, 11975157, Chenze Qi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linjun Shao.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shi, Z., Xu, P. et al. Pyridine Functionalized Polystyrene Supported Cobalt Superfine Fibers as an Efficient and Recyclable Catalyst for Heck Reactions. Fibers Polym 25, 797–805 (2024). https://doi.org/10.1007/s12221-024-00482-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00482-y

Keywords

Navigation