Skip to main content
Log in

Model Construction of Nonwovens with Hierarchically-Structured Fiber Morphology

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nonwoven microstructural geometries strongly influence the performance of nonwovens in practical application. Designing nonwovens for the specific environment of the targeted application will have to rely on the ability to understand microstructure of the media and model the nonwoven geometry. In recent years, hierarchically-structured fibers have received an increasing amount of attention. In this study, focusing on the micro-/nanofibrous nonwovens with helical fibers, which introduce enhanced properties, we develop a method to characterize nonwovens microstructure and to construct nonwoven geometry model. A co-electrospinning system is used to prepare nonwovens with helical nanofibers, and scanning electron microscopy is used to acquire the microstructural image. By developing a code called microstructural nonwoven analyzer (MiNA) based on digital imaging processing, fiber geometry in nonwovens, including fiber morphology and helix geometry, is successfully characterized. By combining MiNA and a developed model construction code, the nonwoven geometry model is constructed. This method provides the possibility in designing fibrous media with different fiber morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Y. Kiyak, B. Maze, B. Pourdeyhimi, Sep. Purif. Rev.Purif. Rev. 48, 282 (2019). https://doi.org/10.1080/15422119.2018.1479968

    Article  CAS  Google Scholar 

  2. W.T. Zhou, Y.M. Zhang, S. Du, X.X. Chen, K. Qi, T. Wu, J.L. Li, S.Z. Cui, J.X. He, Acs Appl. Polym. Mater. 3, 3093 (2021). https://doi.org/10.1021/acsapm.1c00313

    Article  CAS  Google Scholar 

  3. A. Frank, M. Weber, C. Hils, U. Mansfeld, K. Kreger, H. Schmalz, H.W. Schmidt, Macromol. Rapid Commun.. Rapid Commun. (2022). https://doi.org/10.1002/marc.202200052

    Article  Google Scholar 

  4. L. Zhang, G.M. Biesold, C. Zhao, H. Xu, Z. Lin, Adv. Mater. (Deerfield Beach, Fla.) (2022). https://doi.org/10.1002/adma.202200776

    Article  Google Scholar 

  5. F.Z. Zhang, J. Chen, J.P. Yang, Adv. Fiber Mater. 4, 720 (2022). https://doi.org/10.1007/s42765-022-00146-7

    Article  CAS  Google Scholar 

  6. J. Wu, N. Wang, Y. Zhao, L. Jiang, J. Mater. Chem. A (2013). https://doi.org/10.1039/c3ta10451f

    Article  Google Scholar 

  7. M. Kanik, S. Orguc, G. Varnavides, J. Kim, T. Benavides, D. Gonzalez, T. Akintilo, C.C. Tasan, A.P. Chandrakasan, Y. Fink, P. Anikeeva, Science 365, 145 (2019). https://doi.org/10.1126/science.aaw2502

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Cheng, R.R. Wang, K.H. Chan, X. Lu, J. Sun, G.W. Ho, ACS Nano 12, 3898 (2018). https://doi.org/10.1021/acsnano.8b01372

    Article  CAS  PubMed  Google Scholar 

  9. Y.Y. Zhao, X.R. Miao, J.Y. Lin, X.H. Li, F.G. Bian, J. Wang, X.Z. Zhang, B.H. Yue, Global Chall.Chall. 1, 6 (2017). https://doi.org/10.1002/gch2.201600021

    Article  CAS  Google Scholar 

  10. D. Teng, Y. Zeng, Text. Res. J. (2022). https://doi.org/10.1177/00405175221095576

    Article  Google Scholar 

  11. M.J. Lehmann, J. Weber, A. Kilian, M. Heim, Chem. Eng. Technol. 39, 403 (2016). https://doi.org/10.1002/ceat.201500341

    Article  CAS  Google Scholar 

  12. P. Soltani, M. Zarrebini, R. Laghaei, A. Hassanpour, Chem. Eng. Res. Des. 124, 299 (2017). https://doi.org/10.1016/j.cherd.2017.06.035

    Article  CAS  Google Scholar 

  13. S. Berujon, E. Ziegler, Phys. Rev. Appl. Rev. Appl. (2016). https://doi.org/10.1103/PhysRevApplied.5.044014

    Article  Google Scholar 

  14. J.L. Cercos-Pita, I.R. Cal, D. Duque, G.S. de Moreta, Comput. Phys. Commun.. Phys. Commun. 223, 55 (2018). https://doi.org/10.1016/j.cpc.2017.10.008

    Article  ADS  CAS  Google Scholar 

  15. N.A. Hotaling, K. Bharti, H. Kriel, C.G. Simon, Biomaterials 61, 327 (2015). https://doi.org/10.1016/j.biomaterials.2015.05.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Baheti, M. Tunak, Fibers Polym. 19, 2612 (2018). https://doi.org/10.1007/s12221-018-8674-1

    Article  Google Scholar 

  17. A. Gotz, V. Senz, W. Schmidt, J. Huling, N. Grabow, S. Illner, Measurement (2021). https://doi.org/10.1016/j.measurement.2021.109265

    Article  Google Scholar 

  18. G. Di Remigio, I. Rocchi, V. Zania, Appl. Clay Sci. 214, 106248 (2021). https://doi.org/10.1016/j.clay.2021.106248

    Article  CAS  Google Scholar 

  19. L. Yu, G. Wang, C. Zhi, B. Xu, Comput. Model. Eng. Sci.. Model. Eng. Sci. 119, 365 (2019). https://doi.org/10.32604/cmes.2019.04494

    Article  Google Scholar 

  20. R. Wang, B. Xu, J. Ind. Text. 46, 968 (2016). https://doi.org/10.1177/1528083715610295

    Article  Google Scholar 

  21. Y. He, N. Deng, B. Xin, L. Liu, J. Text. Inst. Text. Inst. (2022). https://doi.org/10.1080/00405000.2022.2042059

    Article  Google Scholar 

  22. Z.Y. Zhou, M.X. Liu, W.X. Deng, Y.M. Wang, Z.F. Zhu, Text. Res. J. (2022). https://doi.org/10.1177/00405175221115472

    Article  Google Scholar 

  23. Z.Y. Zhou, X.F. Yang, J.F. Ji, Y.M. Wang, Z.F. Zhu, Text. Res. J. 93, 936 (2023). https://doi.org/10.1177/00405175221114633

    Article  CAS  Google Scholar 

  24. Z.Y. Zhou, Z.J. Ma, Y.M. Wang, Z.F. Zhu, Text. Res. J. 93, 172 (2023). https://doi.org/10.1177/00405175221117614

    Article  CAS  Google Scholar 

  25. X.J. Zhu, F.P. Qian, J.L. Lu, H. Zhang, Chem. Eng. Technol. 36, 788 (2013). https://doi.org/10.1002/ceat.201200512

    Article  CAS  Google Scholar 

  26. F.P. Qian, N.J. Huang, X.J. Zhu, J.L. Lu, Powder Technol. 249, 63 (2013). https://doi.org/10.1016/j.powtec.2013.07.030

    Article  CAS  Google Scholar 

  27. B.W. Cao, F.P. Qian, M.M. Ye, Y. Guo, S.L. Wang, J.L. Lu, Y.L. Han, Build. Environ.. Environ. (2021). https://doi.org/10.1016/j.buildenv.2021.108015

    Article  Google Scholar 

  28. S. Abishek, A.J.C. King, R. Mead-Hunter, V. Golkarfard, W. Heikamp, B.J. Mullins, Sep. Purif. Technol. Purif. Technol. 188, 493 (2017). https://doi.org/10.1016/j.seppur.2017.07.052

    Article  CAS  Google Scholar 

  29. M. Faessel, C. Delisée, F. Bos, P. Castéra, Compos. Sci. Technol. 65, 1931 (2005). https://doi.org/10.1016/j.compscitech.2004.12.038

    Article  CAS  Google Scholar 

  30. M. Grothaus, A. Klar, J. Maringer, P. Stilgenbauer, R. Wegener, J. Math. Ind. 4, 1 (2014)

    Article  MathSciNet  Google Scholar 

  31. X. Zhang, J. Chen, Y. Zeng, Polymer (2020). https://doi.org/10.1016/j.polymer.2020.122609

    Article  Google Scholar 

  32. N. Otsu, IEEE Trans. Syst. Man Cybern. SMC-9 (1979). https://doi.org/10.1109/tsmc.1979.4310076

    Article  Google Scholar 

  33. P. D. Kovesi, MATLAB and Octave functions for computer vision and image processing. Available at https://peterkovesi.com/matlabfns/.

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (No. 12172087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchun Zeng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, T., Xu, Y. et al. Model Construction of Nonwovens with Hierarchically-Structured Fiber Morphology. Fibers Polym 25, 693–701 (2024). https://doi.org/10.1007/s12221-023-00459-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00459-3

Keywords

Navigation