Skip to main content
Log in

A Modified Hand-Held Force Meter to Measure Yarn Tension in the Ring Spinning Process

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Yarn tension measurement and control are crucial in ensuring high-quality ring yarn production. Currently, the predominant testing method is to apply a three-roller tension meter to measure the yarn tension between the front rollers and yarn guide. However, the measurement hinders the twist propagation probably causing yarn breakage during the spinning process. In this study, a modified hand-held force meter was proposed to measure the yarn tension with reduced wrap angle. The yarn tension meter was calibrated, and the results showed that the errors between actual yarn tension and theoretical tension are less than 7%. The tension meter was then used in the real-spinning process, and it was found that the spinning stability was not affected by the tension sensor. Additionally, a theoretical model was used to analyze the effect of the wrap angle on the yarn tension and twist distribution. The results showed that due to the reduced wrap angle, yarn tension and twist distribution were not significantly affected. The most significant advantage of this tension meter is its minimal impact on the spinning process and yarn performance, while being a cost-effective and simple solution for measuring yarn tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R. Yin, Text. Res. J. 91, 278 (2020). https://doi.org/10.1177/0040517520940807

    Article  CAS  Google Scholar 

  2. Y.L.L.R. Yin, R. Fisher, Y. Chen, M.J. Li, W.L. Mub, X.X. Huang, J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.129116

    Article  Google Scholar 

  3. R. V. M. Gowda, Babu, K. M., in Fabric Testing, pp. 309, (2008).

  4. Y. Ling, C. Henson, A. West, R. Yin, Text. Res. J. (2022). https://doi.org/10.1177/00405175221139323

    Article  Google Scholar 

  5. H. Zhang, H. Xia, Y. Lu, J. Wu, X. Zhang, Y. Wei, Text. Res. J. 92, 5049 (2022). https://doi.org/10.1177/00405175221114658

    Article  CAS  Google Scholar 

  6. X.W. Zhengxue-Tang, W. Barrie-Fraser, L. Wang, Fibers Polym. 5, 5 (2004). https://doi.org/10.1007/BF02875525

    Article  Google Scholar 

  7. R. Yin, Spinning dynamics and performances of modified ring spun yarns (The Hong Kong Polytechnic University, Hong Kong, 2018)

    Google Scholar 

  8. J.-g. Zhang, X.-g. Wu, L. Zhu, C. Yu, W.-b. Zhu, J.-b. Zhang, Embedded Yarn Tension Control System Based on the Design of the Sensor (2009)

  9. P. Cui, Y. Zhang, Y. Xue, J. Eng. Fibers Fabr. (2020). https://doi.org/10.1177/1558925020902979

    Article  Google Scholar 

  10. G. F. Chen, H. C. Sun, L. L. Zhai, L. L. Peng, A capacitance based circuit design for yarn breaking detection. in Advanced Materials Research, vol. 562. (Trans Tech Publications Ltd, 2012), pp. 1840–1843

    Google Scholar 

  11. B. De Pauw, F. Berghmans, H. Thienpont, P. Verdiere, T. Geernaert, Text. Res. J. 90, 857 (2019). https://doi.org/10.1177/0040517519881817

    Article  CAS  Google Scholar 

  12. Y. Ding, W. Lu, Y. Zhang, Y. Feng, Y. Zhou, IEEE Trans. Ind. Electron. 69, 13781 (2022). https://doi.org/10.1109/tie.2021.3135618

    Article  Google Scholar 

  13. Q. Xu, S. Q. Mei, Z. M. Zhang, Measurement method of yarn tension based on CCD technology. in Advanced Materials Research, vol. 230. (Trans Tech Publications Ltd, 2011), pp. 89–93

    Google Scholar 

  14. D. Zhang, Q. Ma, Y. Tan, H. Liao, C. Lu, F. Tang, X. Liu, Y. Fu, X. Wang, X. Gan, Text. Res. J. 92, 919 (2021). https://doi.org/10.1177/00405175211034246

    Article  CAS  Google Scholar 

  15. L. Peng, Y. Li, Q. Zheng, X. Hu, Text. Res. J. 93, 1019 (2022). https://doi.org/10.1177/00405175221129655

    Article  CAS  Google Scholar 

  16. L. P. Yang Li, J. Liu, Q. Zheng, X. Hu, Optimization and test of contact yarn tension sensor considering bending stiffness, IET, Online Conference, Beijing, China, (2022)

  17. M. Hossain, M. Sparing, T. Espenhahn, A. Abdkader, C. Cherif, R. Hühne, K. Nielsch, Text. Res. J. 90, 951 (2019). https://doi.org/10.1177/0040517519879899

    Article  CAS  Google Scholar 

  18. R. Yin, X.-M. Tao, B.-G. Xu, Text. Res. J. 90, 572 (2019). https://doi.org/10.1177/0040517519873057

    Article  CAS  Google Scholar 

  19. G. Ying, F. Jie, Y. Rong, W. Xungai, M. van der Sluijs, T. Xiaoming, Text. Res. J. 85, 1355 (2015). https://doi.org/10.1177/0040517514563717

    Article  CAS  Google Scholar 

  20. R. Yin, X.M. Tao, B.G. Xu, Text. Res. J. 88, 1876 (2017). https://doi.org/10.1177/0040517517712099

    Article  CAS  Google Scholar 

  21. L. Euler, Memoires de l'academie des sciences de Berlin, p. 265 (1769)

  22. R. Yin, X. Tao, W. Jasper, Cellulose 27, 9683 (2020)

    Article  CAS  Google Scholar 

  23. X. Tao, B. Xu, Text. Res. J. (2003). https://doi.org/10.1177/004051750307300116

    Article  Google Scholar 

  24. J. Feng, B.G. Xu, X.M. Tao, Meas. Sci. Technol. 23, 115605 (2012). https://doi.org/10.1088/0957-0233/23/11/115605

    Article  CAS  Google Scholar 

  25. R. Yin, X. M. Tao, and B. G. Xu (2016), Sci Rep, 6, 24432 https://doi.org/10.1038/srep24432

Download references

Acknowledgements

This work was supported by the start-up at North Carolina State University (NCSU). Yali Ling acknowledged the financial support by the VF Graduate Student Impact Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Yin.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y., Chen, M., Liu, Y. et al. A Modified Hand-Held Force Meter to Measure Yarn Tension in the Ring Spinning Process. Fibers Polym 24, 2967–2975 (2023). https://doi.org/10.1007/s12221-023-00271-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00271-z

Keywords

Navigation