Skip to main content
Log in

Fire Resistant Building Radiative Cooler with Synergistically Optical Selective Based on 2D/3D Cellulose/LDH Nanosheets Film for Effective Energy Conservation

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Passive radiant cooling (PRC) technology has an irreplaceable position in building cooling and energy conservation due to sustainable and environmental friendly without energy consumption. However, the lack of consideration for building security in extreme weather conditions, especially in hot and overheated conditions, which propose a requirements for synergistic design of fire resistance and optical selectivity of materials. Herein, this work propose to introduce the compound (PAC) originated from phytic acid (PA) and cytosine (C) and the LDH nanosheets modified by ammonium polyphosphate (APP) into porous cellulose acetate (CA) film to obtain synergistically functionalized 2D/3D cellulose LDH photonic films (CPA films). The presence of substantial amounts of P elements effectively enhances the fire resistance of films, so that it burns without an open flame and with excellent self-extinguishing. Furthermore, the P=O and P−O in APP and PAC endows CPA films with outstanding atmospheric window emissivity via selective absorption, whose infrared emissivity is 93.68%. Meanwhile, the modified dispersive LDH increases solar radiation reflectivity to 96.15%. As a verification, building models covered with films are constructed, cooling of 6℃ be achieved and average energy saving efficiency is 22.8% through shading roof merely. Looking forward to the future, the CPA films will get a comprehensive application in buildings, 5G communication base stations, spacecraft and all equipment exposed to solar.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data is available on the demand of journal.

References

  1. A. Pirvaram, N. Talebzadeh, S.N. Leung, P.G. O’Brien, Renew. Sust. Energ. Rev. 162, 112415 (2022)

    Article  CAS  Google Scholar 

  2. Q. Zhang, S. Wang, X. Wang, Y. Jiang, J. Li, W. Xu, B. Zhu, J. Zhu, Small Methods 6, e2101379 (2022)

    Article  PubMed  Google Scholar 

  3. L. Chen, K. Zhang, M. Ma, S. Tang, F. Li, X. Niu, Build. Simul. 13, 1165 (2020)

    Article  Google Scholar 

  4. X. Zhou, H. Li, J. Wang, J. Zhao, Q. Xie, L. Li, J. Liu, J. Yu, J. Build. Eng. 53, 104571 (2022)

    Article  Google Scholar 

  5. Z. Ye, S.-C. Hsu, Autom. Constr. 143, 104574 (2022)

    Article  Google Scholar 

  6. R. Lovreglio, E. Dillies, E. Kuligowski, A. Rahouti, M. Haghani, Autom. Constr. 141, 104452 (2022)

    Article  Google Scholar 

  7. I.I. Smalyukh, Adv. Mater. 33, e2001228 (2021)

    Article  PubMed  Google Scholar 

  8. L. Carlosena, Á. Ruiz-Pardo, J. Feng, O. Irulegi, R.J. Hernández-Minguillón, M. Santamouris, Sol Energy 208, 430 (2020)

    Article  Google Scholar 

  9. K. Chen, M. Liu, Y. Shi, H. Wang, L. Fu, Y. Feng, P. Song, Nano Res. 15, 9531 (2022)

    Article  CAS  Google Scholar 

  10. L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao, K. Cao, P. Song, L.-C. Tang, Mater. Sci. Eng. R Rep. 150, 100690 (2022)

    Article  Google Scholar 

  11. Y. Chen, B. Zhao, H. Zhang, T. Zhang, D. Yang, F. Qiu, Chem. Eng. J. 450, 138177 (2022)

    Article  CAS  Google Scholar 

  12. W. He, P. Song, B. Yu, Z. Fang, and H. Wang, Prog. Mater. Sci., 114 (2020).

  13. S. Huo, P. Song, B. Yu, S. Ran, V.S. Chevali, L. Liu, Z. Fang, H. Wang, Prog. Polym. Sci. 114, 100687 (2021)

    Article  Google Scholar 

  14. S.T. Lazar, T.J. Kolibaba, J.C. Grunlan, Nat. Rev. Mater. 5, 259 (2020)

    Article  CAS  Google Scholar 

  15. Q. Sun, Y. Ding, S.I. Stoliarov, J. Sun, G. Fontaine, S. Bourbigot, Compos. B. Eng. 194, 108055 (2020)

    Article  CAS  Google Scholar 

  16. W.X. Li, H.J. Zhang, X.P. Hu, W.X. Yang, Z. Cheng, C.Q. Xie, J. Hazard. Mater. 398, 123001 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Sui, H. Sima, W. Shao, C. Zhang, Compos. B. Eng. 229, 109463 (2022)

    Article  CAS  Google Scholar 

  18. W. Sun, Y. Sun, Chem. Eng. J. 450, 138034 (2022)

    Article  Google Scholar 

  19. I. Ali, N.K. Kim, D. Bhattacharyya, Molecules 26, 4094 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Wang, Y. Zhang, Mater. Lett. 324, 132667 (2022)

    Article  Google Scholar 

  21. J. Liu, Z. Xin, J. Appl. Polym. Sci. 140, 625–640 (2022)

    Google Scholar 

  22. H. Shen, W. Wu, Z. Wang, W. Wu, Y. Yuan, Y. Feng, J. Appl. Polym. Sci. 138, 51187 (2021)

    Article  CAS  Google Scholar 

  23. S.-C. Huang, C. Deng, H. Chen, Y.-M. Li, Z.-Y. Zhao, S.-X. Wang, Y.-Z. Wang, ACS Appl Polym. Mater. 1, 1979 (2019)

    Article  CAS  Google Scholar 

  24. X. Liu, Q. Zhang, B. Peng, Y. Ren, B. Cheng, C. Ding, X. Su, J. He, S. Lin, J. Clean. Prod. 243, 2108017 (2020)

    Google Scholar 

  25. N. Li, J. Ming, R. Yuan, S. Fan, L. Liu, F. Li, X. Wang, J. Yu, D. Wu, A.C.S. Sustain, Chem. Eng. 8, 290 (2019)

    CAS  Google Scholar 

  26. X. Zhou, S. Qiu, X. Mu, M. Zhou, W. Cai, L. Song, W. Xing, Y. Hu, Compos. B. Eng. 202, 108397 (2020)

    Article  CAS  Google Scholar 

  27. Y. Hou, Z. Xu, R. An, H. Zheng, W. Hu, and K. Zhou, Compos. B. Eng., 249 (2023).

  28. J. Huang, C. Lin, Y. Li, and B. Huang, Int. J. Heat Mass Transf., 186 (2022).

  29. Y. Chen, B. Dang, J. Fu, C. Wang, C. Li, Q. Sun, H. Li, Nano Lett. 21, 397 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu, C. Driemeier, J. Dai, O.J. Rojas, A. Isogai, L. Wagberg, L. Hu, Nature 590, 47 (2021)

    Article  CAS  PubMed  Google Scholar 

  31. H. Tu, M. Zhu, B. Duan, L. Zhang, Adv. Mater. 33, e2000682 (2021)

    Article  PubMed  Google Scholar 

  32. B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu, H. Min, S. Tang, X. Meng, Nano Energy 81, 105600 (2021)

    Article  CAS  Google Scholar 

  33. C. Wu, J. Ma, J. Dai, Y. Duan, J. Xue, L. Qiang, N. Xu, Fibers Polym. 24, 811–821 (2023)

    Article  CAS  Google Scholar 

  34. W. Abotbina, S.M. Sapuan, M.T.H. Sultan, M.F.M. Alkbir, R.A. Ilyas, Fibers Polym. 24, 681–692 (2023)

    Article  CAS  Google Scholar 

  35. B. Gu, K. Liang, T. Zhang, F. Qiu, D. Yang, M. Chen, Cellulose 27, 8471 (2020)

    Article  CAS  Google Scholar 

  36. N. Li, J. Wang, D. Liu, X. Huang, Z. Xu, C. Zhang, Z. Zhang, M. Zhong, Sol. Energy Mater Sol. Cells 194, 103 (2019)

    Article  CAS  Google Scholar 

  37. G. Chen, Y. Wang, J. Qiu, J. Cao, Y. Zou, S. Wang, D. Jia, Y. Zhou, A.C.S. Appl, Mater. Interfaces 12, 54963 (2020)

    Article  CAS  Google Scholar 

  38. Y. Tian, X. Liu, Z. Wang, J. Li, Y. Mu, S. Zhou, F. Chen, M.L. Minus, G. Xiao, Y. Zheng, Nano Energy 96, 107085 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (52173158, 32171725), the Outstanding Youth Foundation of Jiangsu Province (No. BK20200107) and the facility support from of the Big Data Computing Center of Southeast University.

Author information

Authors and Affiliations

Authors

Contributions

SS conceptualization, software, validation, investigation, data curation, formal analysis, writing, original draft. SF investigation, review and editing, formal analysis, project administration. CL software, investigation, data curation. MH supervision, project administration, funding acquisition. XB conceptualization, resources, data curation. ZZ conceptualization, methodology, resources, supervision. YZ conceptualization, methodology, resources, project administration, funding acquisition, supervision. QY conceptualization, methodology, resources, supervision.

Corresponding authors

Correspondence to Yuming Zhou or Qingzhao Yao.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to in influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9943 KB)

Supplementary file2 (MP4 2892 KB)

Supplementary file3 (MP4 11770 KB)

Supplementary file4 (MP4 5416 KB)

Supplementary file5 (MP4 7293 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Feng, S., Liu, C. et al. Fire Resistant Building Radiative Cooler with Synergistically Optical Selective Based on 2D/3D Cellulose/LDH Nanosheets Film for Effective Energy Conservation. Fibers Polym 24, 1951–1961 (2023). https://doi.org/10.1007/s12221-023-00198-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00198-5

Keywords

Navigation