Skip to main content
Log in

Development of 3D Printed Biodegradable Poly-lactic Acid/Polyurethane Foams/Milled Glass Fibers of Sustainable Composites with Application on Helmet

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Composite materials primarily contribute to engineering applications. The increase in additive manufacturing technology has many advantages in the manufacturing of composite materials. This study aims to design and fabricate a tri-material structure (TMS) composed of a 3D-printed poly-lactic acid (PLA) lattice frame infilled with polyurethane foams (PUFs) reinforced with milled glass fibers (MGFs). The mechanical behavior of the fabricated composite samples was investigated and compared to the PLA lattice of the mono-material (MMS) and PLA/PUFs of the bi-material structure (BMS). The MGFs content in TMS was varied at 1.25, 2.5, 3.75, and 5 vol%. Tensile, compression, three-point bending, and shore hardness tests were performed to determine the mechanical properties of the composite structures. The results revealed that the TMS samples exhibited the most enhanced mechanical behavior owing to their effective dispersion and load transfer ability. Finally, helmet prototypes of TMS were fabricated, tested and compared with the helmet prototypes of MMS and BMS compositions using a compression test. Findings showed that the TMS samples with 3.75 vol% showed the most enhanced tensile yield stress (9.53 ± 0.52 MPa), compression yield stress (12.21 ± 0.18 MPa), and flexural stress (14.93 ± 0.34 MPa). However, the TMS samples with 5 vol% had the most improved Shore hardness (78.86 ± 3.28). Consequently, the helmet prototype of 3.75 vol% showed the most enhanced behavior with a compressive peak force of 2752.77 ± 53.63 N due to homogeneous dispersion of incorporated MGFs in matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The experimental datasets obtained from this research work and then the analyzed results during the current study are available from the corresponding author on reasonable request.

References

  1. T.K. Das, P. Ghosh, N.C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv. Compos. Hybrid Mater. 2, 214–233 (2019)

    Article  CAS  Google Scholar 

  2. D.K. Rajak, D.D. Pagar, R. Kumar, C.I. Pruncu, Recent progress of reinforcement materials: a comprehensive overview of composite materials. J. Mater. Res. Technol. 8, 6354–6374 (2019)

    Article  CAS  Google Scholar 

  3. S. Jambari, M.Y. Yahya, M.R. Abdullah, M. Jawaid, Woven Kenaf/Kevlar Hybrid Yarn as potential fiber reinforced for anti-ballistic composite material. Fibers Polym. 18, 563–568 (2017)

    Article  CAS  Google Scholar 

  4. B. Hachemane, R. Zitoune, B. Bezzazi, C. Bouvet, Sandwich composites impact and indentation behaviour study. Compos. Part B Eng. 51, 1–10 (2013). https://doi.org/10.1016/j.compositesb.2013.02.014

    Article  CAS  Google Scholar 

  5. H. Fan, L. Yang, F. Sun, D. Fang, Compression and bending performances of carbon fiber reinforced lattice-core sandwich composites. Compos. Part A Appl. Sci. Manuf. 52, 118–125 (2013). https://doi.org/10.1016/j.compositesa.2013.04.013

    Article  CAS  Google Scholar 

  6. S. Iqbal, R. Khan, Effect of brushing & abrading of laminae on the mode I fracture toughness of glass fiber/epoxy composite. Constr. Build. Mater. 261, 120508 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120508

    Article  CAS  Google Scholar 

  7. C. Bouvet, S. Rivallant, J.J. Barrau, Low velocity impact modeling in composite laminates capturing permanent indentation. Compos. Sci. Technol. 72, 1977–1988 (2012). https://doi.org/10.1016/j.compscitech.2012.08.019

    Article  CAS  Google Scholar 

  8. J. O’Donnell, V. Chalivendra, Multi-functional glass/carbon fibers hybrid inter/intra laminated composites. Compos. Part C Open Access. 4, 100121 (2021). https://doi.org/10.1016/j.jcomc.2021.100121

    Article  CAS  Google Scholar 

  9. W. Chen, Y. Chen, Y. Cheng, W. Zhang, M. Shao, Y. Shen, P. Wu, B. Zheng, S. Li, W. Zhang, Three-dimensional multilayered interconnected network of conjugated carbon nanofibers encapsulated silicon/graphene oxide for lithium storage. J. Inorg. Organomet. Polym. Mater. 30, 801–807 (2020)

    Article  CAS  Google Scholar 

  10. H.B. Vinay, H.K. Govindaraju, P. Banakar, Evaluation of glass/carbon reinforced polymer composites. Polym. Polym. Compos. 24, 469–472 (2016). https://doi.org/10.1177/096739111602400704

    Article  CAS  Google Scholar 

  11. T.P. Sathishkumar, S. Satheeshkumar, J. Naveen, Glass fiber-reinforced polymer composites—a review. J. Reinf. Plast. Compos. 33, 1258–1275 (2014). https://doi.org/10.1177/0731684414530790

    Article  CAS  Google Scholar 

  12. S. Yang, W. Liu, Y. Fang, R. Huo, Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites. J. Mater. Sci. 54, 2102–2121 (2019). https://doi.org/10.1007/s10853-018-2944-6

    Article  CAS  Google Scholar 

  13. M. Remanan, M. Kannan, R.S. Rao, S. Bhowmik, L. Varshney, M. Abraham, K. Jayanarayanan, Microstructure development, wear characteristics and kinetics of thermal decomposition of hybrid nanocomposites based on poly aryl ether ketone, boron carbide and multi walled carbon nanotubes. J. Inorg. Organomet. Polym. Mater. 27, 1649–1663 (2017)

    Article  CAS  Google Scholar 

  14. G. Liu, Y. Xiong, L. Zhou, Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications. Compos. Commun. (2021). https://doi.org/10.1016/j.coco.2021.100907

    Article  Google Scholar 

  15. K. Friedrich, Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 1, 3–39 (2018). https://doi.org/10.1016/j.aiepr.2018.05.001

    Article  Google Scholar 

  16. R. Keshavamurthy, V. Tambrallimath, D. Saravanabavan, Development of polymer composites by additive manufacturing process. Elsevier Ltd. (2021). https://doi.org/10.1016/b978-0-12-803581-8.11885-5

    Article  Google Scholar 

  17. C.M. Navarathna, N.B. Dewage, A.G. Karunanayake, E.L. Farmer, F. Perez, E.B. Hassan, T.E. Mlsna, C.U. Pittman, Rhodamine B adsorptive removal and photocatalytic degradation on MIL-53-Fe MOF/magnetic magnetite/biochar composites. J. Inorg. Organomet. Polym. Mater. 30, 214–229 (2020)

    Article  CAS  Google Scholar 

  18. C. Li, F. Wang, G. Douglas, Z. Zhang, R. Guidoin, L. Wang, Comprehensive mechanical characterization of PLA fabric combined with PCL to form a composite structure vascular graft. J. Mech. Behav. Biomed. Mater. 69, 39–49 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. S. Jiang, L.J. Huang, Q. An, L. Geng, X.J. Wang, S. Wang, Study on titanium-magnesium composites with bicontinuous structure fabricated by powder metallurgy and ultrasonic infiltration. J. Mech. Behav. Biomed. Mater. 81, 10–15 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. C. Li, F. Wang, P. Chen, Z. Zhang, R. Guidoin, L. Wang, Preventing collapsing of vascular scaffolds: the mechanical behavior of PLA/PCL composite structure prostheses during in vitro degradation. J. Mech. Behav. Biomed. Mater. 75, 455–462 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. A. Das, P. Mahanwar, A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 3, 93–101 (2020). https://doi.org/10.1016/j.aiepr.2020.07.002

    Article  Google Scholar 

  22. S.A. Guelcher, Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng. Part B Rev. 14, 3–17 (2008). https://doi.org/10.1089/teb.2007.0133

    Article  CAS  PubMed  Google Scholar 

  23. W. Wang, C. Wang, Polyurethane for biomedical applications: a review of recent developments. Elsevier Masson SAS. (2012). https://doi.org/10.1533/9781908818188.115

    Article  Google Scholar 

  24. T. Khan, V. Acar, M.R. Aydin, B. Hülagü, H. Akbulut, M.Ö. Seydibeyoğlu, A review on recent advances in sandwich structures based on polyurethane foam cores. Polym. Compos. 41, 2355–2400 (2020). https://doi.org/10.1002/pc.25543

    Article  CAS  Google Scholar 

  25. X. Li, J. Li, J. Wang, J. Yuan, F. Jiang, X. Yu, F. Xiao, Recent applications and developments of polyurethane materials in pavement engineering. Constr. Build. Mater. 304, 124639 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124639

    Article  CAS  Google Scholar 

  26. A. Kausar, Polyurethane composite foams in high-performance applications: a review. Polym. Plast. Technol. Eng. 57, 346–369 (2018). https://doi.org/10.1080/03602559.2017.1329433

    Article  CAS  Google Scholar 

  27. R. Ganesamoorthy, G. Suresh, K.R. Padmavathi, J. Rajaparthiban, R. Vezhavendhan, G. Bharathiraja, Experimental analysis and mechanical properties of fly-ash loaded E-glass fiber reinforced IPN (vinylester/polyurethane) composite. Fibers Polym. 23(10), 916–2926 (2022). https://doi.org/10.1007/s12221-022-4194-0

    Article  CAS  Google Scholar 

  28. M. Tomin, Á. Kmetty, Polymer foams as advanced energy absorbing materials for sports applications—a review. J. Appl. Polym. Sci. 139, 1–23 (2022). https://doi.org/10.1002/app.51714

    Article  CAS  Google Scholar 

  29. N.V. Gama, A. Ferreira, A. Barros-Timmons, Polyurethane foams: past, present, and future. Materials (Basel). (2018). https://doi.org/10.3390/ma11101841

    Article  PubMed  PubMed Central  Google Scholar 

  30. H.W. Engels, H.G. Pirkl, R. Albers, R.W. Albach, J. Krause, A. Hoffmann, H. Casselmann, J. Dormish, Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew. Chemie Int. Ed. 52, 9422–9441 (2013). https://doi.org/10.1002/anie.201302766

    Article  CAS  Google Scholar 

  31. L. Chang, L. Xu, Y. Liu, D. Qiu, Superabsorbent polymers used for agricultural water retention. Polym. Test. 94, 107021 (2021). https://doi.org/10.1016/j.polymertesting.2020.107021

    Article  CAS  Google Scholar 

  32. H. Yang, B. Yu, P. Song, C. Maluk, H. Wang, Surface-coating engineering for flame retardant flexible polyurethane foams: a critical review. Compos. Part B Eng. 176, 107185 (2019). https://doi.org/10.1016/j.compositesb.2019.107185

    Article  CAS  Google Scholar 

  33. J. Peyrton, L. Avérous, Structure-properties relationships of cellular materials from biobased polyurethane foams. Mater. Sci. Eng. R Rep. (2021). https://doi.org/10.1016/j.mser.2021.100608

    Article  Google Scholar 

  34. C. Qu, A.L. Doherty, X. Xing, W. Sun, S. Albanese, A. Lima, S. Qi, B. De Vivo, Polyurethane foam-based passive air samplers in monitoring persistent organic pollutants: theory and application, 2nd ed. Elsevier B.V. (2018). https://doi.org/10.1016/B978-0-444-63763-5.00021-5

  35. R. Selvasembian, W. Gwenzi, N. Chaukura, S. Mthembu, Recent advances in the polyurethane-based adsorbents for the decontamination of hazardous wastewater pollutants. J. Hazard. Mater. 417, 125960 (2021). https://doi.org/10.1016/j.jhazmat.2021.125960

    Article  CAS  PubMed  Google Scholar 

  36. S.H. Kim, H.C. Park, H.M. Jeong, B.K. Kim, Glass fiber reinforced rigid polyurethane foams. J. Mater. Sci. 45, 2675–2680 (2010). https://doi.org/10.1007/s10853-010-4248-3

    Article  CAS  Google Scholar 

  37. M.S. Kim, J.D. Kim, J.H. Kim, J.M. Lee, Mechanical performance degradation of glass fiber-reinforced polyurethane foam subjected to repetitive low-energy impact. Int. J. Mech. Sci. 194, 106188 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106188

    Article  Google Scholar 

  38. M. Jing, G. Sui, J. Zhao, Q. Zhang, Q. Fu, Enhancing crystallization and mechanical properties of poly(lactic acid)/milled glass fiber composites via self-assembled nanoscale interfacial structures. Compos. Part A Appl. Sci. Manuf. 117, 219–229 (2019). https://doi.org/10.1016/j.compositesa.2018.11.020

    Article  CAS  Google Scholar 

  39. M.K. Singh, R. Kitey, Filler size effect on fracture behavior of milled-fiber composites. Proc. Struct. Integr. 14, 475–481 (2019). https://doi.org/10.1016/j.prostr.2019.05.057

    Article  Google Scholar 

  40. K. Saravanakumar, V. Arumugam, Effect of milled glass fibers on quasi-static indentation and tensile behavior of tapered laminates under acoustic emission monitoring. Eng. Fract. Mech. 201, 36–46 (2018). https://doi.org/10.1016/j.engfracmech.2018.09.001

    Article  Google Scholar 

  41. K. Saravanakumar, H. Subramanian, V. Arumugam, H.N. Dhakal, Influence of milled glass fillers on the impact and compression after impact behavior of glass/epoxy composite laminates. Polym. Test. 75, 133–141 (2019). https://doi.org/10.1016/j.polymertesting.2019.02.007

    Article  CAS  Google Scholar 

  42. J. Qiao, Q. Zhang, C. Wu, G. Wu, L. Li, Effects of fiber volume fraction and length on the mechanical properties of milled glass fiber/polyurea composites. Polymers (Basel). (2022). https://doi.org/10.3390/polym14153080

    Article  PubMed  PubMed Central  Google Scholar 

  43. C.T. Ng, L. Susmel, Notch static strength of additively manufactured acrylonitrile butadiene styrene (ABS). Addit. Manuf. 34, 101212 (2020). https://doi.org/10.1016/j.addma.2020.101212

    Article  CAS  Google Scholar 

  44. Z. Quan, Z. Larimore, A. Wu, J. Yu, X. Qin, M. Mirotznik, J. Suhr, J.H. Byun, Y. Oh, T.W. Chou, Microstructural design and additive manufacturing and characterization of 3D orthogonal short carbon fiber/acrylonitrile-butadiene-styrene preform and composite. Compos. Sci. Technol. 126, 139–148 (2016). https://doi.org/10.1016/j.compscitech.2016.02.021

    Article  CAS  Google Scholar 

  45. M. LaMonica, Additive manufacturing. Technol. Rev. 116, 58–59 (2013). https://doi.org/10.24840/2183-6493_007.003_0005

    Article  Google Scholar 

  46. M.B. Mawale, A.M. Kuthe, S.W. Dahake, Additive layered manufacturing: state-of-the-art applications in product innovation. Concurr. Eng. Res. Appl. 24, 94–102 (2016). https://doi.org/10.1177/1063293X15613111

    Article  Google Scholar 

  47. T.J. Horn, O.L.A. Harrysson, Overview of current additive manufacturing technologies and selected applications. Sci. Prog. 95, 255–282 (2012). https://doi.org/10.3184/003685012X13420984463047

    Article  CAS  PubMed  Google Scholar 

  48. B. Hao, G. Lin, 3D printing technology and its application in industrial manufacturing. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/782/2/022065

    Article  Google Scholar 

  49. N. Shahrubudin, T.C. Lee, R. Ramlan, An overview on 3D printing technology: technological, materials, and applications. Proc. Manuf. 35, 1286–1296 (2019). https://doi.org/10.1016/j.promfg.2019.06.089

    Article  Google Scholar 

  50. M. Attaran, The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 60, 677–688 (2017). https://doi.org/10.1016/j.bushor.2017.05.011

    Article  Google Scholar 

  51. S. Singh, G. Singh, C. Prakash, S. Ramakrishna, Current status and future directions of fused filament fabrication. J. Manuf. Process. 55, 288–306 (2020). https://doi.org/10.1016/j.jmapro.2020.04.049

    Article  Google Scholar 

  52. X. Gao, S. Qi, X. Kuang, Y. Su, J. Li, D. Wang, Fused filament fabrication of polymer materials: a review of interlayer bond. Addit. Manuf. 37, 101658 (2021). https://doi.org/10.1016/j.addma.2020.101658

    Article  CAS  Google Scholar 

  53. S. Terekhina, I. Skornyakov, T. Tarasova, S. Egorov, Effects of the infill density on the mechanical properties of nylon specimens made by filament fused fabrication. Technologies. 7, 57 (2019). https://doi.org/10.3390/technologies7030057

    Article  Google Scholar 

  54. B. Akhoundi, A.H. Behravesh, A. Bagheri Saed, Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. J. Reinf. Plast. Compos. 38, 99–116 (2019). https://doi.org/10.1177/0731684418807300

    Article  CAS  Google Scholar 

  55. S. Wickramasinghe, T. Do, P. Tran, FDM-Based 3D printing of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers (Basel). 12, 1–42 (2020). https://doi.org/10.3390/polym12071529

    Article  CAS  Google Scholar 

  56. M.A.M. Nor, S.M. Sapuan, M.Z.M. Yusoff, E.S. Zainudin, Mechanical, thermal and morphological properties of woven kenaf fiber reinforced polylactic acid (PLA) composites. Fibers Polym. 23(10), 2875–2884 (2022). https://doi.org/10.1007/s12221-022-4370-2

    Article  CAS  Google Scholar 

  57. A.M.P. Anthony A. D’Amico, A. Debaie, Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling. Rapid Prototyp. J. 9, 121 (2003)

  58. I. Tirado-Garcia, D. Garcia-Gonzalez, S. Garzon-Hernandez, A. Rusinek, G. Robles, J.M. Martinez-Tarifa, A. Arias, Conductive 3D printed PLA composites: on the interplay of mechanical, electrical and thermal behaviours. Compos. Struct. 265, 113744 (2021). https://doi.org/10.1016/j.compstruct.2021.113744

    Article  CAS  Google Scholar 

  59. K.P. Weiss, N. Bagrets, C. Lange, W. Goldacker, J. Wohlgemuth, Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. IOP Conf. Ser. Mater. Sci. Eng. (2015). https://doi.org/10.1088/1757-899X/102/1/012022

    Article  Google Scholar 

  60. L. Jaksa, D. Pahr, G. Kronreif, A. Lorenz, Development of a multi-material 3D printer for functional anatomic models. Int. J. Bioprint. 7, 145–155 (2021). https://doi.org/10.18063/IJB.V7I4.420

    Article  Google Scholar 

  61. F. Li, N.P. Macdonald, R.M. Guijt, M.C. Breadmore, Increasing the functionalities of 3D printed microchemical devices by single material, multimaterial, and print-pause-print 3D printing. Lab Chip. 19, 35–49 (2019). https://doi.org/10.1039/c8lc00826d

    Article  CAS  Google Scholar 

  62. Y.T. Kao, T. Dressen, D.S. Kim, S. Ahmadizadyekta, B.L. Tai, Experimental investigation of mechanical properties of 3D-printing built composite material. In: Proc.-26th Annu. Int. Solid Free. Fabr. Symp.-An Addit. Manuf. Conf. SFF 2015 (2020), p. 904–913

  63. Y.T. Kao, Y. Zhang, J. Wang, B.L. Tai, Loading-unloading cycles of three-dimensional-printed built bimaterial structures with ceramic and elastomer. J. Manuf. Sci. Eng. Trans. ASME. 139, 1–6 (2017). https://doi.org/10.1115/1.4034668

    Article  Google Scholar 

  64. Y.T. Kao, Y. Zhang, J. Wang, B.L. Tai, Bending behaviors of 3D-printed Bi-material structure: Experimental study and finite element analysis. Addit. Manuf. 16, 197–205 (2017). https://doi.org/10.1016/j.addma.2017.06.005

    Article  Google Scholar 

  65. Y.T. Kao, A.R. Amin, N. Payne, J. Wang, B.L. Tai, Low-velocity impact response of 3D-printed lattice structure with foam reinforcement. Compos. Struct. 192, 93–100 (2018). https://doi.org/10.1016/j.compstruct.2018.02.042

    Article  Google Scholar 

  66. A. Mustafa, B. Aloyaydi, S. Subbarayan, F.A. Al-Mufadi, Mechanical properties enhancement in composite material structures of poly-lactic acid/epoxy/milled glass fibers prepared by fused filament fabrication and solution casting. Polym. Compos. (2021). https://doi.org/10.1002/pc.26345

    Article  Google Scholar 

  67. ASTM, ASTM D638-14, Standard Practice for Preparation of Metallographic Specimens, ASTM Int. 82, 1–15 (2016). https://doi.org/10.1520/D0638-14.1

  68. L. Di Landro, G. Sala, D. Olivieri, Deformation mechanisms and energy absorption of polystyrene foams for protective helmets. Polym. Test. 21, 217–228 (2002). https://doi.org/10.1016/S0142-9418(01)00073-3

    Article  Google Scholar 

  69. ASTM, D695-Standard Test Method for Compressive Properties of Rigid Plastics, ASTM Stand. 189, 1–8 (2013). https://doi.org/10.1016/j.juro.2013.02.2555.

  70. ASTM, D790-03-Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulation Materials, ASTM Stand. 1–11 (2015). http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Methods+for+Flexural+Properties+of+Unreinforced+and+Reinforced+Plastics+and+Electrical+Insulating+Materials#0.

  71. ASTM, Standard Test Method for Rubber Property—Durometer Hardness, ASTM - D2240. (n.d.)

Download references

Author information

Authors and Affiliations

Authors

Contributions

AMA formal analysis, validation, roles/writing-original draft. BA visualization; investigation, data curation, writing—review and editing. SS conceptualization, methodology, investigation, roles/writing-original draft. FAA-M resources, funding acquisition, project administration.

Corresponding author

Correspondence to Subbarayan Sivasankaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa Al-Areqi, A., Aloyaydi, B., Sivasankaran, S. et al. Development of 3D Printed Biodegradable Poly-lactic Acid/Polyurethane Foams/Milled Glass Fibers of Sustainable Composites with Application on Helmet. Fibers Polym 24, 2065–2082 (2023). https://doi.org/10.1007/s12221-023-00189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00189-6

Keywords

Navigation