Skip to main content
Log in

Functionalized PVA/PDMS-Modified Nanocomposite Electrospun Film with Tertiary Roughness for Humid and Bacterial Applications

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The purpose of this paper was to construct a porous micro-surface with a rough tertiary structure and to prepare a long-term sustained-release of antibacterial hydrophobic membrane in moist, multi-extreme environments. The hydrophobic groups were cross-linked by mixing, electrostatic spraying and impregnation at the hydroxide end of the PVA. When the contact angle of the membrane surface was increased from 30.8° to 140.3° and up to 156° in aqueous solution at pH 11, the membrane showed super-hydrophobicity. Adding nanoparticles to the spray layer to construct porous microspheres could increase the surface of the membrane and improve the slow-release effect of PVA-coated silver nanoparticles. Silver nanoparticles had been added to various locations of the hydrophobic composite membrane layer, and their antibacterial properties had been investigated in wet and dry environments. The results showed that the antibacterial effect of embedding in the PVA fiber layer on Escherichia coli and Staphylococcus aureus was optimum, and when the antibacterial circle was up to 3.1 cm, the sustained-release durability was the optimum. It was found that the composite PDMS/\({\mathrm{TiO}}_{2}\) antibacterial hydrophobic membranes on the surface could be recycled and reused.

Highlights

A tertiary rough porous structured membrane was prepared by electrostatic spinning and spray lamination.

The tertiary roughness structure improved the contact angle and antibacterial properties of the composite film.

Nano-silver loaded in PVA can be effectively sustained-released by surface composite porous microspheres.

The hydrophilic material PVA reached super-hydrophobicity under alkaline solutions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J. Lin, B. Ding, J. Yu, Direct fabrication of highly nanoporous polystyrene fibers via electrospinning[J]. ACS Appl. Mater. Interfaces. 2, 521–528 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. Y. Wan, Z. Lin, D. Gan, T. Cui, M. Wan, F. Yao, Q. Zhang, H. Luo, Effect of graphene oxide incorporation into electrospun cellulose acetate scaffolds on breast cancer cell culture[J]. Fibers Polym. (2019). https://doi.org/10.1007/s12221-019-9133-3

    Article  Google Scholar 

  3. B.C. Shiu, Y. Zhang, T.T. Li, Y. Ye, C.W. Lou, J.H. Lin, Electrospinning PVP/Urushiol/Ag nanofilms: use as wrapper of stainless steel yarns[J]. Prog. Org. Coat. (2022). https://doi.org/10.1016/j.porgcoat.2022.106797

    Article  Google Scholar 

  4. J. Zuo, Z. Liu, C. Zhou, Y. Zhou, X. Wen, S. Xu, J. Cheng, P. Pi, A durable superwetting clusters-inlayed mesh with high efficiency and flux for emulsion separation[J]. J. Hazard Mater. 403, 123620 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers[J]. Eur. Polym. J. 41, 409–421 (2005)

    Article  CAS  Google Scholar 

  6. G.H. Zhang, P.P. Wang, X.X. Zhang, C.H. Xiang, L.L. Li, The preparation of PCL/ MSO/SiO2 hierarchical superhydrophobic mats for oil-water separation by one-step method[J]. Eur. Polym. J. 116, 386–393 (2019)

    Article  CAS  Google Scholar 

  7. M. Wang, X. Cheng, G. Jiang, J. Xie, W. Cai, J. Li, Y. Wang, Preparation and pervaporation performance of PVA membrane with biomimetic modified silica nanoparticles as coating[J]. J. Membr. Sci. (2022). https://doi.org/10.1016/j.memsci.2022.120535

    Article  Google Scholar 

  8. Z. Wang, H. Ma, B. Chu, B.S. Hsiao, Super-hydrophobic modification of porous natural polymer “luffa sponge” for oil absorption[J]. Polymer 126, 470–476 (2017)

    Article  CAS  Google Scholar 

  9. L. Zhou, C.Z. Su, B.Y. Chen, Q. Zhao, X.Y. Wang, X.Y. Zhao, G.N. Ju, Durable ER@ SiO2@ PDMS superhydrophobic composite designed by double crosslinking strategy for efficient oil-water separation[J]. Polymer 245, 124722 (2022)

    Article  CAS  Google Scholar 

  10. Q. Chen, Z. Wang, A copper organic phosphonate functionalizing boron nitride nanosheet for PVA film with excellent flame retardancy and improved thermal conductive property[J]. Compos. Part A (2022). https://doi.org/10.1007/s10853-018-3037-2

    Article  Google Scholar 

  11. L. Xing, C. Hu, Y. Zhang, X. Wang, L. Shi, R. Ran, A mechanically robust double-network hydrogel with high thermal responses via doping hydroxylated boron nitride nanosheets[J]. J. Mater. Sci. 54(4), 3368–3382 (2019)

    Article  CAS  Google Scholar 

  12. Z. Yulin, S. Mingwei, D. Yongfu, Li. Binwei, S. Linying, R. Rong, Preparation and properties of polyacrylamide/ polyvinyl alcohol physical double network hydrogel[J]. RSC Adv. 6(113), 112468–112476 (2016)

    Article  Google Scholar 

  13. Y. Wang, J. Yan, Z. Wang, Wu. Jianning, G. Meng, Z. Liu, X. Guo, One-pot fabrication of triple-network structure hydrogels with high-strength and self-healing properties[J]. Mater. Lett. 207, 53–56 (2017)

    Article  CAS  Google Scholar 

  14. J. Wang, J. Qu, Y. Liu, S. Wang, X. Liu, Y. Chen, Q. Peiyao, M. Guohao, X. Liu, “Crocodile skin” ultra-tough, rapidly self-recoverable, anti-dry, anti-freezing, MoS2-based ionic organohydrogel as pressure sensors[J]. Colloids Surf. A (2021). https://doi.org/10.1016/j.colsurfa.2021.126458

    Article  Google Scholar 

  15. K. Neibert, V. Gopishetty, A. Grigoryev, I. Tokarev, N. Al-Hajaj, J. Vorstenbosch, A. Philip, S. Minko, D. Maysinger, Wound-healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles[J]. Adv. Healthcare Mater. 1(5), 621–630 (2012)

    Article  CAS  Google Scholar 

  16. G. Cheng, C. Yin, H. Tu, S. Jiang, Q. Wang, X. Zhou, X. Xing, C. Xie, X. Shi, Y. Du, Controlled co-delivery of growth factors through layer-by-layer assembly of core–shell nanofibers for improving bone regeneratio[J]. ACS Nano 13(6), 6372–6382 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. N. Mishra, A. Dhwaj, D. Verma, A. Prabhakar, Cost-effective microabsorbance detection based nanoparticle immobilized microfluidic system for potential investigation of diverse chemical contaminants present in drinking water[J]. Anal. Chim. Acta (2022). https://doi.org/10.1016/j.aca.2022.339734

    Article  PubMed  Google Scholar 

  18. H. Xu, X. Wang, J. Niu, Y. Nan, J. Pu, H. Zhou, D. Jizhou, B. Hou, Construction of MXene/PDMS-based triboelectric nanogenerators for high-performance cathodic protection[J]. Adv. Mater. Interfaces (2022). https://doi.org/10.1002/admi.202102085

    Article  Google Scholar 

  19. D.L. Puhl, D. Mohanraj, D.W. Nelson, R.J. Gilbert, Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools[J]. Adv. Drug Deliv. Rev. 183, 114161 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. X. Gu, Y. Matsumura, Y. Tang, S. Roy, R. Hoff, B. Wang, W.R. Wagner, Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart[J]. Biomaterials 133, 132–143 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. A. Rosales, V. Gutiérrez, J. Ocampo-Hernández, M.L. Jiménez-González, I.E. Medina-Ramírez, L. Ortiz-Frade, K. Esquivel, Hydrophobic agents and pH modification as comparative chemical effect on the hydrophobic and photocatalytic properties in SiO2- coating[J]. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2022.153375

    Article  Google Scholar 

  22. C.J. Chu, M.H. Cheng, P.Y. Chung, M.H. Chi, K.S. Jeng, J.T. Chen, Reversible morphology control of three-dimensional block copolymer nanostructures by the solvent annealing-induced wetting in anodic aluminum oxide templates[J]. Int. J. Polym Mater. Polym. Biomater. 65, 695–701 (2016)

    Article  CAS  Google Scholar 

  23. Z. Zhang, D.U. Ahn, Y. Ding, Instabilities of PS/PMMA bilayer patterns with a corrugated surface and interface[J]. Macromolecules 45, 1972–1981 (2012)

    Article  CAS  Google Scholar 

  24. P.-W. Fan, W.-L. Chen, T.-H. Lee, J.-T. Chen, Annealing effect on electrospun polymer fibers and their transformation into polymer microspheres [J]. Macromol. Rapid Commun. 33, 343–349 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. H.-F. Tseng, M.-H. Cheng, K.-S. Jeng, J.-W. Li, J.-T. Chen, Asymmetric polymer particles with anisotropic curvatures by annealing polystyrene microspheres on poly(vinyl alcohol) films [J]. Macromol. Rapid. Commun. 37, 1825–1831 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. R. Mead-Hunter, A.J. King, B.J. Mullins, Plateau Rayleigh instability simulation [J]. Langmuir 28, 6731–6735 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. P.-W. Fan, W.-L. Chen, T.-H. Lee, Y.-J. Chiu, J.-T. Chen, Rayleigh-instability-driven morphology transformation by thermally annealing electrospun polymer fibers on substrates[J]. Macromolecules 45, 5816–5822 (2012)

    Article  CAS  Google Scholar 

  28. H. Wang, T. Chang, X. Li, W. Zhang, Z. Hu, A.M. Jonas, Scaled down glass transition temperature in confined polymer nanofibers [J]. Nanoscale 8, 14950–14955 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. A.W. Tan, J.M. Torkelson, Poly(methyl methacrylate) nanotubes in AAO templates: designing nanotube thickness and characterizing the T g -confinement effect by DSC[J]. Polymer 82, 327–336 (2016)

    Article  CAS  Google Scholar 

  30. R.K. Das, M. Das, Study of silver nanoparticle/polyvinyl alcohol nanocomposite[J]. Int. J. Plast. Technol. 23(1), 101–109 (2019)

    Article  CAS  Google Scholar 

  31. K. Swaroop, S. Francis, H.M. Somashekarappa, Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity[J]. Mater. Today Proc. (2016). https://doi.org/10.1016/j.matpr.2016.04.076

    Article  Google Scholar 

  32. Yu. Huang Lei, Y.X. Lei, Yu. Lin, Xu. Yuanhong, N. Yusheng, Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds[J]. J. Colloid Interface Sci. 622, 117–125 (2022)

    Article  CAS  PubMed  Google Scholar 

  33. L. Li, D. Zhou, D. Huang, Gi. Xue, Double glass transition temperatures of poly(methyl methacrylate) confined in alumina nanotube templates[J]. Macromolecules 47, 297–303 (2014)

    Article  CAS  Google Scholar 

  34. H. Peng, H. Yang, X. Ma, T. Shi, Z. Li, S. Xue, Q. Wang, In situ fabrication of flower-like ZnO on aluminum alloy surface with superhydrophobicity[J]. Colloids Surf. A (2022). https://doi.org/10.1016/j.colsurfa.2022.128800

    Article  Google Scholar 

  35. M. Lim, H. Kwon, D. Kim, J. Seo, H. Han, S.B. Khan, Highly-enhanced water resistant and oxygen barrier properties of cross-linked poly(vinyl alcohol) hybrid films for packaging applications[J]. Prog. Org. Coat. (2015). https://doi.org/10.1016/j.porgcoat.2015.03.005

    Article  Google Scholar 

  36. F. Xue, X. Shi, W. Bai, Y. Li, S. Zhu, Y. Liu, L. Feng, Enhanced durability and versatile superhydrophobic coatings via facile one-step spraying technique[J]. Colloids Surf. A (2022). https://doi.org/10.1016/j.colsurfa.2022.128411

    Article  Google Scholar 

Download references

Acknowledgements

I sincerely thank Prof. Xinmei Li and the National Natural Science Foundation (52161017, 51865055) of China for their help and support, as well as the regional research and innovation project (XJ2022G048), which I chaired and the Xinjiang Institute of Physics and Chemistry and its testing staff for their help.

Author information

Authors and Affiliations

Authors

Contributions

RY: investigations, experimental analysis, processing data and writing papers. XL: funding acquisition, administration, resources, writing review.

Corresponding author

Correspondence to Xinmei Li.

Ethics declarations

Conflict of Interest

I declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Li, X. Functionalized PVA/PDMS-Modified Nanocomposite Electrospun Film with Tertiary Roughness for Humid and Bacterial Applications. Fibers Polym 24, 1237–1251 (2023). https://doi.org/10.1007/s12221-023-00099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00099-7

Keywords

Navigation