Skip to main content
Log in

Tunable Mechanical Properties of Vectran Liquid Crystal Polymer (LCP) Short Fiber-Reinforced Soft Composite

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We investigated the tunable mechanical properties of Vectran liquid crystal polymer (LCP) short fiber-reinforced soft composite; we varied the relative foam density and the short fiber loading ratio. The microstructures revealed well-defined pores, matrices, and short fibers. We derived the compressive stress–strain responses and stress relaxations and then performed dynamic mechanical analysis (DMA). To investigate dynamic tunability, the abilities of the soft composites to isolate vibrations from 1 to 300 Hz were assessed. We used the generalized Maxwell model to fit the experimental data and to extract model parameters. We present a simple, versatile, and cost-effective method for the fabrication of LCP short fiber-reinforced soft composites with well-defined and widely tunable mechanical properties. These composites will find applications in many devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in the article.

References

  1. M.S. Sarfraz, H. Hong, S.S. Kim, Compos. Struct. 266, 113864 (2021)

    Article  CAS  Google Scholar 

  2. J. Agarwal, S. Sahoo, S. Mohanty, S.K. Nayak, J. Thermoplast. Compos. Mater. 33, 978 (2019)

    Article  Google Scholar 

  3. R. Yadav, K. Tirumali, X. Wang, M. Naebe, B. Kandasubramanian, Def. Technol. 16, 107 (2020)

    Article  Google Scholar 

  4. W. Wang, H. Rodrigue, H.-I. Kim, M.-W. Han, S.-H. Ahn, Compos. B: Eng. 98, 397 (2016)

    Article  Google Scholar 

  5. D. Zhalmuratova, H.-J. Chung, A.C.S. Appl, Polym. Mater. 2, 1073 (2020)

    CAS  Google Scholar 

  6. R. Sen, G. Mullins, Compos. B: Eng. 38, 751 (2007)

    Article  Google Scholar 

  7. D. Yong-Feng, Z. Tong-Wei, Z. Yu, L. Qian-Wen, W. Qiong, Eur. J. Environ. Civ. Eng. 1, 16 (2017)

    Google Scholar 

  8. J. Kaufmann, Procedia Eng. 112, 140 (2015)

    Article  CAS  Google Scholar 

  9. M. Matsubara, S. Teramoto, A. Nagatani, S. Kawamura, N. Tsujiuchi, A. Ito, M. Kobayashi, S. Furuta, Exp. Tech. 45, 37 (2020)

    Article  Google Scholar 

  10. D. Norman, R. Robertson, J. Appl. Polym. Sci. 90, 2740 (2003)

    Article  CAS  Google Scholar 

  11. W. Ogierman, G. Kokot, Acta Mech. 227, 173 (2015)

    Article  Google Scholar 

  12. Y. Hu, T. Zhao, P. Zhu, Y. Zhang, X. Liang, R. Sun, C.P. Wong, Nano Res. 11, 1938 (2018)

    Article  Google Scholar 

  13. S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee, I. Park, T. Hyeon, Adv. Mater. 26, 4825 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Y.Q. Li, W.B. Zhu, X.G. Yu, P. Huang, S.Y. Fu, N. Hu, K. Liao, A.C.S. Appl, Mater. Interfaces. 8, 33189 (2016)

    Article  CAS  Google Scholar 

  15. J. Shi, H. Zhang, J. Jackson, A. Shademani, M. Chiao, J. Mater. Chem. B. 4, 7415 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. R. Tao, L. Xi, W. Wu, Y. Li, B. Liao, L. Liu, J. Leng, D. Fang, Compos. Struct. 252, 112663 (2020)

    Article  Google Scholar 

  17. S. Kang, J. Lee, S. Lee, S. Kim, J.-K. Kim, H. Algadi, S. Al-Sayari, D.-E. Kim, D.E. Kim, T. Lee, Adv. Electron. Mater. 2, 1600356 (2016)

    Article  Google Scholar 

  18. A. Koh, J. Sietins, G. Slipher, R. Mrozek, J. Mater. Res. Technol. 33, 2443 (2018)

    Article  CAS  Google Scholar 

  19. A. Kaidarova, M.A. Khan, S. Amara, N.R. Geraldi, M.A. Karimi, A. Shamim, R.P. Wilson, C.M. Duarte, J. Kosel, Adv. Eng. Mater. 20, 1800229 (2018)

    Article  Google Scholar 

  20. I. Zubaidah, A. Norfatriah, S.A. Zatul, A. Zuruzi, Fibers 6, 91 (2018)

    Article  CAS  Google Scholar 

  21. W. Zhao, T. Li, Y. Li, D.J. O’Brien, M. Terrones, B. Wei, J. Suhr, X.L. Lu, J. Mater. 4, 157 (2018)

    Google Scholar 

  22. B.F. Donadon, N.T. Mascia, R. Vilela, L.M. Trautwein, Eng. Struct. 202, 109818 (2020)

    Article  Google Scholar 

  23. S. Gantenbein, C. Mascolo, C. Houriet, R. Zboray, A. Neels, K. Masania, A.R. Studart, Adv. Funct. Mater 31, 2104574 (2021)

    Article  CAS  Google Scholar 

  24. Y. Chen, S. Li, G. Fu, J. Eng. Fibers Fabr. 16, 1 (2021)

    CAS  Google Scholar 

  25. A. Komorek, R. Szczepaniak, P. Przybylek, A. Krzyzak, J.A. Godzimirski, M.R. Roskowicz, D. Seremak, Compos. Struct. 256, 113045 (2021)

    Article  CAS  Google Scholar 

  26. D. Jalocha, A. Constantinescu, R. Neviere, Int. J. Solids Struct. 67–68, 169 (2015)

    Article  Google Scholar 

  27. X. Zhao, T. Wang, Y. Li, L. Huang, S. Handschuh-Wang, Polymers (Basel) 11, 948 (2019)

    Article  PubMed  Google Scholar 

  28. D. Zhu, S. Handschuh-Wang, X. Zhou, J. Mater. Chem. A. 5, 16467 (2017)

    Article  CAS  Google Scholar 

  29. J. Fan, A. Chen, Polymers (Basel) 11, 467 (2019)

    Article  PubMed  Google Scholar 

  30. I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, J. Micromech. Microeng. 24, 035017 (2014)

    Article  CAS  Google Scholar 

  31. J. Lei, M. Xu, T. Liu, Y. Xuan, H. Sun, Z. Wei, AIP Adv. 10, 075315 (2020)

    Article  CAS  Google Scholar 

  32. L. Andena, F. Caimmi, L. Leonardi, M. Nacucchi, F. De Pascalis, J. Cell. Plast. 55, 49 (2018)

    Article  Google Scholar 

  33. J.V. Mane, S. Chandra, S. Sharma, H. Ali, V.M. Chavan, B.S. Manjunath, R.J. Patel, Procedia Eng. 173, 726 (2017)

    Article  Google Scholar 

  34. T. Hana, T. Janda, J. Schmidt, A. Zemanova, M. Sejnoha, M. Eliasova, M. Vokac, Materials (Basel) 12, 2241 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant funded by Ministry of Trade, Industry and Energy (MOTIE, Korea) and the Korea Evaluation Institute of Industrial Technology (KEIT) (Grant No. 20006388, and No. 20017462); and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1A2C4001731).

Author information

Authors and Affiliations

Authors

Contributions

G-YL and S-HL conceptualized this work. G-YL, S-HL, and G-SL designed the materials, specimens, and the experiments. G-SL and G-YL conducted the experiments. G-YL and G-SL analyzed the data and wrote the paper, and all authors provided feedback. G-YL supervised the project.

Corresponding authors

Correspondence to Seung-Han Lee or Gil-Yong Lee.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Appendix

Appendix

See Figure 18.

In Fig. 18a, the normal stress within the soft composite is [28]:

$$ \sigma \left( t \right) = E_{\infty } \varepsilon \left( t \right) + \int_{0}^{t} {E_{R} \left( {t - \tau } \right)\dot{\varepsilon }\left( \tau \right)d\tau } = E_{\infty } \varepsilon \left( t \right) + \int_{0}^{t} {E_{V} e^{{ - \frac{t - \tau }{{\tau_{V} }}}} \dot{\varepsilon }\left( \tau \right)d\tau } $$
(1)

where ε(t) is the strain, t is the time, \(E_{R} \left( t \right) = E_{V} e^{{ - \frac{t}{{\tau_{V} }}}}\) is the relaxation kernel, τV = EV/ηV is the relaxation time, and τ is an integral variable. Then, force Fσ(t) in Fig. 18b is:

$$ F_{\sigma } \left( t \right) = \sigma \left( t \right)A = E_{\infty } A\varepsilon \left( t \right) + \int_{0}^{t} {E_{V} Ae^{{ - \frac{t - \tau }{{\tau_{V} }}}} \dot{\varepsilon }\left( \tau \right)d\tau } $$
(2)

where A is the area of the soft composite.

Because \(\varepsilon \left( t \right) = \frac{{x_{1} \left( t \right) - x_{2} \left( t \right)}}{L}\), where x1(t) and x2(t) are the displacements of the base (m1) and the upper (m2) mass, respectively, and L is the initial thickness of the soft composite, we obtain:

$$ F_{\sigma } \left( t \right) = \frac{{E_{\infty } A}}{L}\left[ {x_{1} \left( t \right) - x_{2} \left( t \right)} \right] + \int_{0}^{t} {\frac{{E_{V} A}}{L}e^{{ - \frac{t - \tau }{{\tau_{V} }}}} \left[ {\dot{x}_{1} \left( \tau \right) - \dot{x}_{2} \left( \tau \right)} \right]d\tau } $$
(3)

By introducing a spring constant \(K_{\infty } = \frac{{E_{\infty } A}}{L}\) and the relaxation stiffness \(K_{V} = \frac{{E_{V} A}}{L}\), we obtain:

$$ F_{\sigma } \left( t \right) = K_{\infty } \left[ {x_{1} \left( t \right) - x_{2} \left( t \right)} \right] + \int_{0}^{t} {K_{R} \left( {t - \tau } \right)\left[ {\dot{x}_{1} \left( \tau \right) - \dot{x}_{2} \left( \tau \right)} \right]d\tau } $$
(4)

where \(K_{R} \left( t \right) = \frac{{E_{V} A}}{L}e^{{ - \frac{t}{{\tau_{V} }}}} = K_{V} e^{{ - \frac{t}{{\tau_{V} }}}}\) is the relaxation kernel [28].

The Fourier transform of Eq. (4) yields:

$$ F_{\sigma } \left( \omega \right) = K_{\infty } \left[ {X_{1} \left( \omega \right) - X_{2} \left( \omega \right)} \right] + j\omega K_{R} \left( \omega \right)\left[ {X_{1} \left( \omega \right) - X_{2} \left( \omega \right)} \right] $$
(5)

where ω is the angular frequency, \(j = \sqrt { - 1}\) is the imaginary unit, X1(ω) and X2(ω) are the Fourier transforms of x1(t) and x2(t), respectively, and jωKR(ω) is:

$$ j\omega K_{R} \left( \omega \right) = \frac{{K_{V} \omega^{2} \tau_{V}^{2} }}{{1 + \omega^{2} \tau_{V}^{2} }} + j\frac{{K_{V} \omega \tau_{V} }}{{1 + \omega^{2} \tau_{V}^{2} }} = K^{\prime}\left( \omega \right) + jK^{\prime\prime}\left( \omega \right) $$
(6)

By introducing the complex stiffness \(K^{*} \left( \omega \right) = K_{\infty } + K^{\prime}\left( \omega \right) + jK^{\prime\prime}\left( \omega \right)\), we obtain:

$$ F_{\sigma } \left( \omega \right) = K^{*} \left( \omega \right)\left[ {X_{1} \left( \omega \right) - X_{2} \left( \omega \right)} \right] $$
(7)

where \(K^{\prime}\left( \omega \right) = \frac{{K_{V} \omega^{2} \tau_{V}^{2} }}{{1 + \omega^{2} \tau_{V}^{2} }}\) is the storage stiffness, and \(K^{\prime\prime}\left( \omega \right) = \frac{{K_{V} \omega \tau_{V} }}{{1 + \omega^{2} \tau_{V}^{2} }}\) is the loss stiffness.

The equations of motion of the vibration system of Fig. 18(b) are:

$$ \begin{gathered} m_{1} \ddot{x}_{1} \left( t \right) + F_{\sigma } \left( t \right) = F_{e} \left( t \right) \hfill \\ m_{2} \ddot{x}_{2} \left( t \right) - F_{\sigma } \left( t \right) = 0 \hfill \\ \end{gathered} $$
(8)

where Fe(t) denotes the excitation force.

The Fourier transforms of Eq. (8) yield:

$$ \begin{gathered} - m_{1} \omega^{2} X_{1} \left( \omega \right) + F_{\sigma } \left( \omega \right) = F_{e} \left( \omega \right) \hfill \\ - m_{2} \omega^{2} X_{2} \left( \omega \right) - F_{\sigma } \left( \omega \right) = 0 \hfill \\ \end{gathered} $$
(9)

By inserting Eq. (7) into (9) and solving for X1(ω) and X2(ω), we obtain:

$$ \begin{gathered} X_{1} \left( \omega \right) = \frac{1}{{\Delta \left( {\omega^{2} } \right)}}\left[ {K^{*} \left( \omega \right) - m_{2} \omega^{2} } \right]F_{e} \left( \omega \right) \hfill \\ X_{2} \left( \omega \right) = \frac{1}{{\Delta \left( {\omega^{2} } \right)}}K^{*} \left( \omega \right)F_{e} \left( \omega \right) \hfill \\ \end{gathered} $$
(10)

where \(\Delta \left( {\omega^{2} } \right) = \left[ {K^{*} \left( \omega \right) - m_{1} \omega^{2} } \right]\left[ {K^{*} \left( \omega \right) - m_{2} \omega^{2} } \right] - K^{*} \left( \omega \right)^{2}\).

The transmissibility is then \(\frac{{X_{2} \left( \omega \right)}}{{X_{1} \left( \omega \right)}} = \frac{{K^{*} \left( \omega \right)}}{{K^{*} \left( \omega \right) - m_{2} \omega^{2} }}\).

Using \(K^{*} \left( \omega \right) = K_{\infty } + \frac{{K_{V} \omega^{2} \tau_{V}^{2} }}{{1 + \omega^{2} \tau_{V}^{2} }} + j\frac{{K_{V} \omega \tau_{V} }}{{1 + \omega^{2} \tau_{V}^{2} }}\), the magnitude \(\left| {\frac{{X_{2} \left( \omega \right)}}{{X_{1} \left( \omega \right)}}} \right|\) then becomes:

$$ \left| {\frac{{X_{2} \left( \omega \right)}}{{X_{1} \left( \omega \right)}}} \right| = \sqrt {\frac{{\left[ {K_{\infty } + \frac{{K_{V} \omega^{2} \tau_{V}^{2} }}{{1 + \omega^{2} \tau_{V}^{2} }}} \right]^{2} + \left[ {\frac{{K_{V} \omega \tau_{V} }}{{1 + \omega^{2} \tau_{V}^{2} }}} \right]^{2} }}{{\left[ {K_{\infty } + \frac{{K_{V} \omega^{2} \tau_{V}^{2} }}{{1 + \omega^{2} \tau_{V}^{2} }} - m_{2} \omega^{2} } \right]^{2} + \left[ {\frac{{K_{V} \omega \tau_{V} }}{{1 + \omega^{2} \tau_{V}^{2} }}} \right]^{2} }}} $$
(11)

Finally using \(K_{\infty } = \frac{{E_{\infty } A}}{L}\) and \(K_{V} = \frac{{E_{V} A}}{L}\), \(\left| {\frac{{X_{2} \left( \omega \right)}}{{X_{1} \left( \omega \right)}}} \right|\) is obtained in terms of E, EV, and τV as:

$$ \left| {\frac{{X_{2} \left( \omega \right)}}{{X_{1} \left( \omega \right)}}} \right| = \sqrt {\frac{{\left[ {\frac{{E_{\infty } A}}{L} + \frac{{E_{V} A}}{L}\frac{{\omega^{2} \tau_{V}^{2} }}{{1 + \omega^{2} \tau_{V}^{2} }}} \right]^{2} + \left[ {\frac{{E_{V} A}}{L}\frac{{\omega \tau_{V} }}{{1 + \omega^{2} \tau_{V}^{2} }}} \right]^{2} }}{{\left[ {\frac{{E_{\infty } A}}{L} + \frac{{E_{V} A}}{L}\frac{{\omega^{2} \tau_{V}^{2} }}{{1 + \omega^{2} \tau_{V}^{2} }} - m_{2} \omega^{2} } \right]^{2} + \left[ {\frac{{E_{V} A}}{L}\frac{{\omega \tau_{V} }}{{1 + \omega^{2} \tau_{V}^{2} }}} \right]^{2} }}} $$
(12)

Equation (12) was used to fit the transmissibility data of Fig. 15 by deriving the fitting coefficients E, EV, and τV of Fig. 16.

Fig. 18
figure 18

a Generalized Maxwell model for a 1-DOF vibration system and b free-body-diagram representation

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GS., Lee, SH. & Lee, GY. Tunable Mechanical Properties of Vectran Liquid Crystal Polymer (LCP) Short Fiber-Reinforced Soft Composite. Fibers Polym 24, 207–220 (2023). https://doi.org/10.1007/s12221-023-00095-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00095-x

Keywords

Navigation