Skip to main content
Log in

Energy Model for Describing the Viscoelastic Behavior of Knitted Cotton Fabric During Relaxation

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Plain knitted fabric made of cotton, commonly used in the clothing industry, has undergone severe cyclical loading, generated by dynamic fatigue tester, simulating the constraints applied to the structure during its use. An energy model, developed from the viscoelastic parameters of Burger’s model, is used to study the knitted relaxation after fatigue test. The rheological parameters of the Burger’s model are calculated by fitting the experimental curves of the deformation during relaxation of tested knit, using the Microcal Origin 6 software and the equation of Burger’s recovery. As shown in this paper, cyclic loadings present a significant effect on viscoelastic parameters, which manifests as the decrease of the elastic deformation (23.96%) and the increase of the viscoelastic and plastic deformation (83.76% and 148.49%, respectively) when the number of fatigue cycles increases from 6000 to 36,000 cycles. We also noticed that the cyclic deformation of the knitted fabric decreases the energy dissipation rate (86.44%). Indeed, the decrease of energy dissipation rate indicates that the velocity of the recovery during relaxation decreases due to increasing of the friction interfilamentous. The friction opposes to the recovery of the structure until a blocked state. This state corresponds to the permanent deformation. The energy model allows us to give an idea of the ability of the knitted fabric to recover its initial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Dong, J. Zhang, Y. Zhang, M. Yao, Int. J. Cloth Sci. Tech. 15, 47 (2003)

    Article  Google Scholar 

  2. D. Terzopoulos, K. Fleischer, Comput. Gr. 22, 269 (1988)

    Article  Google Scholar 

  3. F.T. Pierce, Text. Res. J. 17, 123 (1947)

    Article  Google Scholar 

  4. G.A.V. Leaf, A. Glaskin, J. Text. Inst. 46, 587 (1955)

    Article  Google Scholar 

  5. G.A.V. Leaf, A. Glaskin, J. Text. Inst. 51, 49 (1960)

    Article  Google Scholar 

  6. G.A.V. Leaf, A. Glaskin, J. Text. Inst. 52, 351 (1961)

    Article  Google Scholar 

  7. P.J. Doyle, J. Text. Inst. 43, 19 (1952)

    Google Scholar 

  8. P.J. Doyle, J. Text. Inst. 44, 561 (1953)

    Article  Google Scholar 

  9. D.L. Munden, J. Text. Inst. 50, 448 (1959)

    Article  Google Scholar 

  10. R. Postle, J. Text. Inst. 59, 65 (1968)

    Article  Google Scholar 

  11. A. Demiroz, T. Dias, J. Text. Inst. 91, 463 (2000)

    Article  Google Scholar 

  12. M. Araujo, R. Fangueiro, H. Hong, AUTEX Res. J. 3, 166 (2003)

    Google Scholar 

  13. D. Semnani, M. Latifi, S. Hmzeh, A.A.A. Jeddi, J. Text. Inst. 94, 203 (2003)

    Article  Google Scholar 

  14. K.F. Choi, T.Y. Lo, Text. Res. J. 73, 739 (2003)

    Article  CAS  Google Scholar 

  15. R. Postle, D.L. Munden, J. Text. Inst. 58, 329 (1967)

    Article  Google Scholar 

  16. B. Hepworth, G.A.V. Leaf, J. Text. Inst. 67, 241 (1976)

    Article  Google Scholar 

  17. X. Wang, B. Yang, Q. Li, F. Wang, X.-M. Tao, Compos. Sci. Technol. 204, 108645 (2021)

    Article  CAS  Google Scholar 

  18. B.M. MacRory, J.R. McCraith, A.B. McNamara, Text. Res. J. 45, 746 (1975)

    Article  Google Scholar 

  19. S. Ben Abdessalem, S. Elmarzougui, F. Sakli, JTATM 5, 1 (2006)

    Google Scholar 

  20. A.A.A. Jeddi, S. Shams, H. Nosraty, A. Sarsharzadeh, J. Text. Inst 94, 223 (2003)

    Article  Google Scholar 

  21. S. Asvadi, R. Postle, Text. Res. J. 64, 208 (1994)

    Article  Google Scholar 

  22. L. Vangheluwe, P. Kiekens, J. Text. Inst. 87, 296 (1996)

    Article  CAS  Google Scholar 

  23. L. Vangheluwe, P. Kiekens, Text. Res. J. 67, 34 (1997)

    Article  CAS  Google Scholar 

  24. B. Al-Gaadi, F. Göktepe, M. Halász, Text. Res. J. 82, 502 (2012)

    Article  CAS  Google Scholar 

  25. A. Asayesh, A.A.A. Jeddi, Text. Res. J. 80, 642 (2010)

    Article  CAS  Google Scholar 

  26. C.J. Kuo, W. Lin, T. Su, Text. Res. J. 81, 1724 (2011)

    Article  CAS  Google Scholar 

  27. B.M. Chapman, Text. Res. J. 44, 531–538 (1974)

    Article  Google Scholar 

  28. I. Ajiki, R. Postle, Int. J. Cloth Sci. Tech. 15, 16 (2003)

    Article  Google Scholar 

  29. M. Mustalahti, J. Rosti, J. Koivisto, M.J. Alava, J. Stat. Mech. (2010). https://doi.org/10.1088/1742-5468/2010/07/P07019

    Article  Google Scholar 

  30. F. Sidoroff, Mécanique des milieux continus [Continuum Mechanics]. CNRS – École Centrale de Lyon, 12–58 (1980)

  31. J. Krim, Adv. Phys. 61, 155 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Marzougui.

Ethics declarations

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzougui, S., Zaouali, R. & Shafee, W. Energy Model for Describing the Viscoelastic Behavior of Knitted Cotton Fabric During Relaxation. Fibers Polym 24, 1149–1156 (2023). https://doi.org/10.1007/s12221-023-00024-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00024-y

Keywords

Navigation