Skip to main content
Log in

Mechanism of Synergetic Growth of Flexibility and Strength of Biomimetic Nanocomposite Fibre

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nanocomposites with carbon nanotubes (CNTs) can combine the stiffness and multi-functionality of carbon nanotubes with the advantages of high toughness and processability of polymers giving rise to properties different from that of general composites. However, when the content of CNTs increases gradually, the flexibility of the composite fibre can reduce. In this paper, we propose a simple method of softening the composite fibre via dimensional helical deformation of fibre inner macromolecule bundles to avoid the deterioration of fibre flexibility. The theoretical simulations were conducted to predict proper helical deformations of the single fibre to increase fibre softness, followed by practical softening of the polyvinylidene difluoride (PVDF)/CNTs composite by tensional twisting of the single fibres. The fibres with and without tensional twisting were tested by Fourier-transformed infrared spectroscopy, scanning electron microscopy, X-ray diffraction and mechanical drawing. Results showed the reinforcement of the PVDF/multi-walled CNTs composite fibres (tensile strength enhanced from 4.71 to 5.19 cN/dtex) with an evident softness reduction (initial modulus increased from 16.8 to 20.52 cN/dtex) as the CNTs content increased from 0 to 1.5 wt%. After the tensional twisting, the initial modulus of the composite fibre was reduced by 62.5% while the fibre strength remained reinforced because biomimetic helix formation improved the internal structure deformation ability of the fibre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Yan, C. Dong, Y. Xiang, S. Jiang, A. Leber, G. Loke, W. Xu, C. Hou, S. Zhou, M. Chen, R. Hu, P. P. Shum, L. Wei, X. Jia, F. Sorin, X. Tao, and G. Tao, Mater. Today, 35, 168 (2020).

    Article  CAS  Google Scholar 

  2. M. Chen, Y. Jiang, N. Guizani, J. Zhou, G. Tao, J. Yin, and K. Hwang, IEEE Netw., 34, 156 (2020).

    Article  Google Scholar 

  3. Y. Zhu, J. Wang, F. Zhang, S. Gao, A. Wang, W. Fang, and J. Jin, Adv. Funct. Mater., 28, 1804121 (2018).

    Article  Google Scholar 

  4. W. Wu, X. Zhang, L. Qin, X. Li, Q. Meng, C. Shen, and G. Zhang, Chem. Eng. J., 379, 122368 (2020).

    Article  CAS  Google Scholar 

  5. Y. M. Yousry, K. Yao, A. M. Mohamed, W. H. Liew, S. Chen, and S. Ramakrishna, Adv. Funct. Mater., 30, 1910592 (2020).

    Article  CAS  Google Scholar 

  6. Y. Zou, X. Chen, W. Guo, X. Liu, and Y. Li, ACS Appl. Energy Mater., 3, 2634 (2020).

    Article  CAS  Google Scholar 

  7. B. Bera and M. D. Sarkar, J. Appl. Phys., 9, 95 (2017).

    Google Scholar 

  8. X. Chen, X. Han, and Q. Shen, Adv. Electron. Mater., 3, 1600460 (2017).

    Article  Google Scholar 

  9. K. A. R. Medeiros, C. R. H. Barbosa, J. R. M. d’Almeida, A. S. Ribeiro, and I. B. Paula, Measurement, 138, 368 (2019).

    Article  Google Scholar 

  10. J. H. Bae and S. H. Chang, Funct. Compos. Struct., 1, 012003 (2019).

    Article  CAS  Google Scholar 

  11. Y. Zhou, J. He, H. Wang, K. Qi, N. Nan, X. You, W. Shao, L. Wang, B. Ding, and S. Cui, Sci. Rep., 7, 12949 (2017).

    Article  Google Scholar 

  12. Y. Yang, Q. Huang, L. Niu, D. Wang, C. Yan, Y. She, and Z. Zheng, Adv. Mater., 29, 1606679 (2017).

    Article  Google Scholar 

  13. Q. Qiu, M. Zhu, Z. Li, K. Qiu, X. Liu, J. Yu, and B. Ding, Nano Energy, 58, 750 (2019).

    Article  CAS  Google Scholar 

  14. S. Chun, W. Son, D. W. Kim, J. Lee, H. Min, H. Jung, D. Kwon, A. H. Kim, Y. J. Kim, S. K. Lim, C. Pang, and C. Choi, ACS Appl. Mater. Interfaces, 11, 16951 (2019).

    Article  CAS  Google Scholar 

  15. L. Wang, L. Wang, Y. Zhang, J. Pan, S. Li, X. Sun, B. Zhang, and H. Peng, Adv. Funct. Mater., 28, 1804456 (2018).

    Article  Google Scholar 

  16. A. Ferri, F. Rault, A. D. Costa, C. Cochrane, M. Boudriaux, G. Lemort, C. Campagne, E. Devaux, C. Courtois, and R. Desfeux, Fiber. Polym., 20, 1333 (2019).

    Article  CAS  Google Scholar 

  17. F. Mokhtari, J. Foroughi, T. Zheng, Z. Cheng, and G. M. Spinks, J. Mater. Chem. A, 7, 8245 (2019).

    Article  CAS  Google Scholar 

  18. L. Liu, Y. Xu, J. Zhu, T. Liu, T. Hou, Y. Li, H. Liu, Y. Xin, and X. Zhou, Integr. Ferroelectr., 201, 23 (2019).

    Article  Google Scholar 

  19. B. Marchiori, S. Regal, Y. Arango, R. Delattre, S. Blayac, and M. Ramuz, Sensors, 20, 603 (2020).

    Article  Google Scholar 

  20. M. G. C. Helena and M. D. R. Marta, Comput. Mater. Sci., 33, 224 (2005).

    Article  Google Scholar 

  21. S. Ojha, S. Paria, S. K. Karan, S. K. Si, A. Maitra, A. K. Das, L. Halder, A. Bera, A. De, and B. B. Khatua, Nanoscale, 11, 22989 (2019).

    Article  CAS  Google Scholar 

  22. S. Mohamadi and S. S. Naser, Fiber. Polym., 17, 582 (2016).

    Article  Google Scholar 

  23. Z. He, Y. Yang, H. Liang, J. Liu, and S. Yu, Adv. Mater., 31, 1902807 (2019).

    Article  CAS  Google Scholar 

  24. M. J. López, I. Cabria, N. H. March, and J. A. Alonso, Carbon, 43, 1371 (2005).

    Article  Google Scholar 

  25. E. Muñoz, A. B. Dalton, S. Collins, M. Kozlov, J. Razal, J. N. Coleman, B. G. Kim, V. H. Ebron, M. Selvidge, J. P. Ferraris, and R. H. Baughman, Adv. Eng. Mater., 6, 801 (2004).

    Article  Google Scholar 

  26. H. Zeng, C. Gao, Y. Wang, P. C. P. Watts, H. Kong, X. Cui, and D. Yan, Polymer, 47, 113 (2006).

    Article  CAS  Google Scholar 

  27. P. Pötschke, T. D. Fornes, and D. R. Paul, Polymer, 43, 3247 (2002).

    Article  Google Scholar 

  28. G. Yamamoto, K. Shirasu, T. Hashida, T. Takagi, J. W. Suk, J. An, R. D. Piner, and R. S. Ruoff, Carbon, 49, 3709 (2011).

    Article  CAS  Google Scholar 

  29. J. W. S. Hearle and J. T. Sparrow, J. Appl. Polym. Sci., 24, 1465 (1979).

    Article  CAS  Google Scholar 

  30. V. A. Krakhmalev and A. A. Paiziev, Cellulose, 13, 45 (2006).

    Article  Google Scholar 

  31. E. Cloete, N. P. Khumalo, and M. N. Ngoepe, Proc. R. Soc. A, 475, 20190516 (2019).

    Article  Google Scholar 

  32. Z. Jia, C. Lu, Y. Liu, P. Zhou, and L. Wang, ACS Sustain. Chem. Eng., 4, 2838 (2016).

    Article  CAS  Google Scholar 

  33. J. W. S. Hearle, Int. J. Biol. Macromol., 27, 123 (2000).

    Article  CAS  Google Scholar 

  34. B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, and L. G. Bachas, Science, 303, 62 (2004).

    Article  CAS  Google Scholar 

  35. L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, and X. Zhang, Polymers, 10, 228 (2018).

    Article  Google Scholar 

  36. Y. Bai, Z. Y. Cheng, V. Bharti, H. S. Xu, and Q. M. Zhang, Appl. Phys. Lett., 76, 3804 (2000).

    Article  CAS  Google Scholar 

  37. N. Levi, R. Czerw, S. Xing, P. Iyer, and D. L. Carroll, Nano Lett., 4, 1267 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University, No.KF2020 215), Hubei Provincial Science and Technology Department (No. 2020BAB082) and JiHua 3542 company Limited (JH3542-XMKJB-20190501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, X., Li, P., Ouyang, J. et al. Mechanism of Synergetic Growth of Flexibility and Strength of Biomimetic Nanocomposite Fibre. Fibers Polym 23, 720–727 (2022). https://doi.org/10.1007/s12221-022-3944-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-3944-3

Keywords

Navigation