Skip to main content
Log in

Bacterial Cellulose Immobilized S. cerevisiae as Microbial Sensor for Rapid BOD Detection

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

As one of the most important parameters to characterize the organic pollution of water, biochemical oxygen demand (BOD) determined through a rapid, in situ and on line method is very attractive. In this paper, a new BOD biosensor has been developed, which are composed of the ecofriendly precursor of Saccharomyces cerevisiae (S. cerevisiae) embedded in bacterial cellulose (BC) matrix and the Ketjen Black (KB) modified glassy-carbon electrode. Furthermore, a doublemediator system is constructed using potassium ferricyanide and menadione in reaction cell to transfer electron from the microbe to electrode. The responses of glucose glutamic acid (GGA) standard solutions are amperomertrically measured with an applied potential of 0.25 V versus Hg/Hg2Cl2 in a three-electrode system. Under the optimum conditions, the (BC/S. cerevisiae-menadione)/KB modified electrode shows a high operational stability with relative standard deviation (RSD) of 4.16% (fourteen assays), a good repeatability (RSD=3.10%), a fast response time (in 20 minutes) and a wide linear range (from 10–220 mg O2l−1). The BOD values measured by this method have been highly correlated with the standard BOD 5-day method for wastewater samples (R2=0.9859, n=3), indicating that it can meet the requirement of BOD rapid measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Jouanneau, L. Recoules, M. J. Durand, A. Boukabache, V. Picot, Y. Primault, A. Lakel, M. Sengelin, B. Barillon, and G. Thouand, Water Res., 49, 62 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. HJ 505-2009, “Water Quality Determination of Biochemical Oxygen Demand after 5 Days (BOD5) for Dilution and Seeding Method”, China, 2009.

  3. I. Karube, T. Matsunaga, S. Mitsuda, and S. Suzuki, Biotechnol. Bioeng., 19, 1535 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. J. Kulys and K. Kadziauskiene, Biotechnol. Bioeng., 22, 221 (1980).

    Article  CAS  Google Scholar 

  5. S. Jouanneau, L. Recoules, M. J. Durand, A. Boukabache, V. Picot, Y. Primault, A. Lakel, M. Sengelin, B. Barillon, and G. Thouand, Water Res., 49, 62 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. G.-J. Chee, Talanta, 117, 366 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. K. Tag, M. Lehmann, C. Chan, R. Renneberg, K. Riedel, and G. Kunze, Sens. Actuators B: Chem., 67, 142 (2000).

    Article  CAS  Google Scholar 

  8. C. Chan, M. Lehmann, K. Tag, M. Lung, K. Gotthard, K. Riedel, B. Gruendig, and R. Renneberg, Biosens. Bioelectron., 14, 131 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. A. S. Zaitseva, V. A. Arlyapov, N. Y. Yudina, S. V. Alferov, and A. N. Reshetilov, Enzyme Microb. Technol., 98, 43 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. S. Niyomdecha, W. Limbut, A. Numnuam, P. Asawatreratanakul, P. Kanatharana, and P. Thavarungkul, Sens. Actuators B: Chem., 241, 473 (2017).

    Article  CAS  Google Scholar 

  11. J. Hu, Y. Li, G. Gao, and S. Xia, Sensors, 17, 2594 (2017).

    Article  Google Scholar 

  12. A. S. Kharkova, V. A. Arlyapov, A. D. Turovskaya, A. N. Avtukh, I. P. Starodumova, and A. N. Reshetilov, Appl. Biochem. Microbiol, 55, 189 (2019).

    Article  CAS  Google Scholar 

  13. J. C. Biffinger, L. A. Fitzgerald, R. Ray, B. J. Little, S. E. Lizewski, E. R. Petersen, B. R. Ringeisen, W. C. Sanders, P. E. Sheehan, J. J. Pietron, J. W. Baldwin, L. J. Nadeau, G. R. Johnson, M. Ribbens, S. E. Finkel, and K. H. Nealson, Bioresour Technol, 102, 290 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. D. R. Bond and D. R. Lovley, Appl. Environ. Microbiol., 69, 1548 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Yi, B. Xie, T. Zhao, and H. Liu, Bioresour. Technol., 265, 415 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Y. Jiang, X. Yang, P. Liang, P. Liu, and X. Huang, Renew. Sust. Energ. Rev., 81, 292 (2018).

    Article  CAS  Google Scholar 

  17. C. Liu, T. Sun, Y. Zhai, and S. Dong, Talanta, 78, 613 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. C. F. Spégel, A. R. Heiskanen, N. Kostesha, T. H. Johanson, M.-F. Gorwa-Grauslund, M. Koudelka-Hep, J. Emnéus, and T. Ruzgas, Anal. Chem., 79, 8919 (2007).

    Article  PubMed  Google Scholar 

  19. K. Morris, K. Catterall, H. Zhao, N. Pasco, and R. John, Anal. Chim. Acta, 442, 129 (2001).

    Article  CAS  Google Scholar 

  20. K. Catterall, D. Robertson, S. Hudson, P. R. Teasdale, D. T. Welsh, and R. John, Talanta, 82, 751 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. K. Catterall, H. Zhao, N. Pasco, and R. John, Anal. Chem., 75, 2584 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. J. D. Rabinowitz, J. F. Vacchino, C. Beeson, and H. M. McConnell, J. Am. Chem. Soc., 120, 2464 (1998).

    Article  CAS  Google Scholar 

  23. A. Heiskanen, J. Yakovleva, C. Spégel, R. Taboryski, M. Koudelka-Hep, J. Emnéus, and T. Ruzgas, Electrochem. Commun., 6, 219 (2004).

    Article  CAS  Google Scholar 

  24. G. Gao, D. Fang, Y. Yu, L. Wu, Y. Wang, and J. Zhi, Talanta, 167, 208 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. H. Nakamura, K. Suzuki, H. Ishikuro, S. Kinoshita, R. Koizumi, S. Okuma, M. Gotoh, and I. Karube, Talanta, 72, 210 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. H. Nakamura, K. Suzuki, S. Okuma, M. Yataka, Y. Mogi and I. Karbe, Res. Rev. Electrochem., 1, 21 (2008).

    CAS  Google Scholar 

  27. Y. Chen, W. Zhou, J. Ma, F. Ruan, X. Qi, and Y. Cai, Microsc. Res. Tech., 83, 268 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. C. Zhao, J. Jiao, W. Zhou, Y. Zhang, H. Liu, X. Yang, B. Pandi, and Y. Cai, J. Clust. Sci., 31, 337 (2020).

    Article  CAS  Google Scholar 

  29. A. Fatoni, A. Numnuam, P. Kanatharana, W. Limbut, C. Thammakhet, and P. Thavarungkul, Sens. Actuators B: Chem., 185, 725 (2013).

    Article  CAS  Google Scholar 

  30. S.-I. Nishimura, M. Nakamura, R. Natsui, and A. Yamada, J. Am. Chem. Soc., 132, 13596 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. H. Tang, S. Yao, J. Mi, X. Wu, J. Hou, and X. Shen, Mater. Lett., 186, 127 (2017).

    Article  CAS  Google Scholar 

  32. H. Tang, S. Yao, X. Shen, X. Xi, and K. Xiao, Energy Technol., 5, 623 (2017).

    Article  CAS  Google Scholar 

  33. M. Min, K. Machida, J. H. Jang, and K. Naoi, J. Electrochem. Soc., 153, A334 (2006).

    Article  CAS  Google Scholar 

  34. M. L. Cacicedo, M. C. Castro, I. Servetas, L. Bosnea, K. Boura, P. Tsafrakidou, A. Dima, A. Terpou, A. Koutinas, and G. R. Castro, Bioresour. Technol., 213, 172 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. W. Hu, S. Chen, B. Zhou, L. Liu, B. Ding, and H. Wang, Sens. Actuators B: Chem., 159, 301 (2011).

    Article  CAS  Google Scholar 

  36. S. Farjana, F. Toomadj, P. Lundgren, A. Sanz-Velasco, O. Naboka, and P. Enoksson, J. Sensors, 20, 77 (2013).

    Google Scholar 

  37. W. Wang, T.-J. Zhang, D.-W. Zhang, H.-Y. Li, Y.-R. Ma, L.-M. Qi, Y.-L. Zhou, and X.-X. Zhang, Talanta, 84, 71 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. W. Wang, H.-Y. Li, D.-W. Zhang, J. Jiang, Y.-R. Cui, S. Qiu, Y.-L. Zhou, and X.-X. Zhang, Electroanalysis, 22, 2543 (2010).

    Article  CAS  Google Scholar 

  39. G. Li, K. Sun, D. Li, P. Lv, Q. Wang, F. Huang, and Q. Wei, Colloid Surf. A: Physicochem. Eng. Asp, 509, 408 (2016).

    Article  CAS  Google Scholar 

  40. K. H. R. Baronian, Biosens. Bioelectron., 19, 953 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. R. M. Walmsley and P. Keenan, Biotechnol. Bioprocess Eng., 5, 387 (2000).

    Article  CAS  Google Scholar 

  42. H. Tsai, S. H. Tsai, H. W. Deng, and C. Bor Fuh, Electroanalysis, 25, 1005 (2013).

    Article  CAS  Google Scholar 

  43. D. Klemm, B. Heublein, H.-P. Fink, and A. Bohn, Angew. Chem. Int. Ed., 44, 3358 (2005).

    Article  CAS  Google Scholar 

  44. C. Cannes, F. Kanoufi, and A. J. Bard, Langmuir, 18, 8134 (2002).

    Article  CAS  Google Scholar 

  45. B. H. Khor, A. K. Ismail, R. Ahamad, and S. Shahir, Electrochim. Acta, 176, 777 (2015).

    Article  CAS  Google Scholar 

  46. S. Oota, Y. Hatae, K. Amada, H. Koya, and M. Kawakami, Biosens. Bioelectron., 26, 262 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. N. Yoshida, K. Yano, T. Morita, S. J. McNiven, H. Nakamura, and I. Karube, Analyst, 125, 2280 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Environmental Protection Bureau of Shaoxing, Zhejiang, China for assistant with standard BOD5 testing, Dr. Sonamuthu Jegatheeswaran for critical reading and englishtening discussions on the manuscript. The Project is funded by the Fundamental Research Funds of Zhejiang Sci-Tech University (2019Y006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Cai.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Wang, G., Sun, M. et al. Bacterial Cellulose Immobilized S. cerevisiae as Microbial Sensor for Rapid BOD Detection. Fibers Polym 22, 1208–1217 (2021). https://doi.org/10.1007/s12221-021-0650-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0650-5

Keywords

Navigation