Skip to main content
Log in

Hybrid Polyester Composites Reinforced with Curauá Fibres and Nanoclays

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This work investigates a hybrid polyester composite consisted of Curauá natural fibres and organophilic clay nanoparticles. A Taguchi method is used to identify the effects of fibre fraction (10, 20 and 30 wt%), alkaline treatment concentration (NaOH, 2.5, 5 and 10 wt%), treatment time (2, 4 and 8 h) and nanoparticle content (2.5, 5 and 10 wt%) on the mechanical behaviour of the hybrid composites under tension and three-point bending. X-ray, FTIR and microstructural analysis are performed to assess the treated and untreated fibre surfaces. The optimum combination of the process parameters for the tensile and flexural properties is: fibre content at 30 wt%, NaOH concentration at 5 wt%, treatment time at 8 h and nanoclay inclusions at 5 wt%. A mean tensile and flexural strength of 36.13 MPa and 32.55 MPa are obtained, which represents percent increases of 39.22 % and 25.43 % compared to the polyester polymer in pristine condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brahmakumar, C. Pavithran, and R. M. Pillai, Compos. Sci. Technol., 65, 563 (2005).

    Article  CAS  Google Scholar 

  2. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos. Part B-Eng., 42, 856 (2011).

    Article  Google Scholar 

  3. M. Ramesh, K. Palanikumar, and K. H. Reddy, Renew. Sustain. Energy Rev., 79, 558 (2017).

    Article  Google Scholar 

  4. H. P. S. Abdul Khalil, A. H. Bhat, and A. F. Ireana Yusra, Carbohydr. Polym., 87, 963 (2012).

    Article  Google Scholar 

  5. V. Fiore, T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, and A. Valenza, Compos. Part B-Eng., 85, 150 (2016).

    Article  CAS  Google Scholar 

  6. J. L. Abot, Y. Song, M. J. Schulz, and V. N. Shanov, Compos. Sci. Technol., 68, 2755 (2008).

    Article  CAS  Google Scholar 

  7. S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, Compos. Part B-Eng., 39, 933 (2008).

    Article  Google Scholar 

  8. L. J. Silva, T. H. Panzera, V. R. Velloso, A. L. Christoforo, and F. Scarpa, Compos. Part B-Eng., 43, 3436 (2012).

    Article  Google Scholar 

  9. P. R. T. Santana, T. H. Panzera, R. T. S. Freire, and A. L. Christoforo, Polym. Test., 64, 307 (2017).

    Article  CAS  Google Scholar 

  10. L. A. Oliveira, J. C. Santos, T. H. Panzera, R. T. S. Freire, L. M. G. Vieira, and F. Scarpa, Compos. Struct., 202, 313 (2018).

    Article  Google Scholar 

  11. R. Dangtungee, J. Tengsuthiwat, P. Boonyasopon, and S. Siengchin, J. Thermoplast. Compos. Mater., 28, 879 (2015).

    Article  CAS  Google Scholar 

  12. T. H. Hsieh, A. J. Kinloch, A. C. Taylor, and S. Sprenger, J. Appl. Polym. Sci., 119, 2135 (2011).

    Article  CAS  Google Scholar 

  13. T. H. Hsieh, A. J. Kinloch, K. Masania, A. C. Taylor, and S. Sprenger, Polymer, 51, 6284 (2010).

    Article  CAS  Google Scholar 

  14. D. He, B. Fan, H. Zhao, M. Yanga, H. Wang, J. Bai, W. Li, X. Zhou, and J. Bai, Mater. Today, 11, 94 (2017).

    CAS  Google Scholar 

  15. J. C. Santos, L. M. G. Vieira, T. H. Panzera, M. A. Schiavon, A. L. Christoforo, and F. Scarpa, Mater. Des., 65, 543 (2015).

    Article  CAS  Google Scholar 

  16. A. C. Detomi, R. M. Santos, S. M. R. Filho, C. C. Martuscelli, T. H. Panzera, and F. Scarpa, Mater. Des., 55, 463 (2014).

    Article  CAS  Google Scholar 

  17. R. B. Torres, J. C. Santos, T. H. Panzera, A. L. Christoforo, P. H. R. Borges, and F. Scarpa, Polym. Test., 57, 87 (2017).

    Article  CAS  Google Scholar 

  18. L. J. Silva, T. H. Panzera, V. R. Velloso, J. C. C. Rubio, A. L. Christoforo, and F. Scarpa, J. Compos. Mater., 47, 1199 (2012).

    Article  Google Scholar 

  19. H. Sadeghipour, H. Ebadi-Dehaghani, D. Ashouri, H. M. Mousavian, and M. G. Shahbazi, Compos. Part B-Eng., 52, 164 (2013).

    Article  CAS  Google Scholar 

  20. A. R. Araújo, W. B. Mesquita, E. L. Canedo, C. M. O. Raposo, D. A. C. S. Andrade, L. H. Carvalho, and S. M. L. Silva, Polímeros, 22, 238 (2012).

    Article  Google Scholar 

  21. M. F. L. Oliveira, M. G. Oliveira, and M. C. A. Leite, Polímeros, 21, 78 (2011).

    Article  Google Scholar 

  22. H. T. Kahraman, H. Gevgilili, D. M. Kalyon, and E. Pehlivan, J. Appl. Poly. Sci., 129, 1773 (2013).

    Article  CAS  Google Scholar 

  23. S. D. Burnside and E. P. Giannelis, Chem. Mater., 7, 1597 (1995).

    Article  CAS  Google Scholar 

  24. M. Zuber, K. M. Zia, I. A. Bhatti, Z. Ali, M. U. Arshad, and M. J. Saif, Int. J. Biol. Macromolecules, 51, 743 (2012).

    Article  CAS  Google Scholar 

  25. A. Porras, A. Maranona, and I. A. Ashcroft, Compos. Struct., 140, 692 (2016).

    Article  Google Scholar 

  26. A. Mohanty, M. Misra, and L. Drzal, Compos. Interf., 8, 313 (2001).

    Article  CAS  Google Scholar 

  27. T. Yu, J. Ren, S. Li, H. Yuan, and Y. Li, Compos. Part AAppl. Sci. Manuf., 41, 499 (2010).

    Article  Google Scholar 

  28. R. Kumar, K. Kumar, and S. Bhowmik, Proc. Mater. Sci., 5, 688 (2014).

    Article  CAS  Google Scholar 

  29. S. Biswas and A. Satapathy, Mater. Des., 31, 1752 (2010).

    Article  CAS  Google Scholar 

  30. G. Raghavendra, S. Acharya, C. Deo, and P. Mishra, Proc. Eng., 38, 2635 (2012).

    Article  CAS  Google Scholar 

  31. A. Patnaik, A. Satapathy, M. Dwivedy, and S. Biswas, J. Compos. Mater., 44, 559 (2010).

    Article  CAS  Google Scholar 

  32. ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2014.

  33. ASTM D790-17, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, 2017.

  34. F. Tomczak, K. G. Satyanarayana, and T. H. D. Sydenstricker, Compos. Part A-Appl. Sci. Manuf., 38, 2227 (2007).

    Article  Google Scholar 

  35. K. G. Satyanarayana; J. L. Guimarães, and F. Wypych, Compos. Part A-Appl. Sci. Manuf., 38, 1694 (2007).

    Article  Google Scholar 

  36. M. S. Fartini, M. S. Abdul Majid, M. Afendi, R. Daud, and A. Mohamad, Appl. Mech. Mater., 554, 27 (2014).

    Article  Google Scholar 

  37. R. Shahroze, M. Ishak, M. Salit, Z. Leman, M. Asim, and M. Chandrasekar, BioRes., 13, 7430 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the collaboration of the State University of Amazonas (UEA) and the State University of São Paulo (USP), and the financial support provided by CNPq (PDE - 205255/2017-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulio Hallak Panzera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García del Pino, G., Kieling, A.C., Bezazi, A. et al. Hybrid Polyester Composites Reinforced with Curauá Fibres and Nanoclays. Fibers Polym 21, 399–406 (2020). https://doi.org/10.1007/s12221-020-9506-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9506-7

Keywords

Navigation