Skip to main content
Log in

Effect of pH Condition on Natural Indigo (Indigofera tinctoria) Reduction by Yeast (Saccharomyces cerevisiae)

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ultimate goal of this research is to develop an efficient microbial system for indigo reduction by using yeast (Saccharomyces cerevisiae). For this purpose, we investigated the effect of pH condition on natural indigo (Indigofera tinctoria) reduction by yeast. We also checked the viability of yeast at high pH condition by observing yeast cell in the indigo reduction bath with an optical microscope. The pH of indigo reduction bath was initially set from 10.2 to 12.0 with the buffer solution. The pH value dropped drastically up to 5.5–6.5 at the initial stage of reduction. After adjusting pH once within 1–2 days, we measured some parameters related to reducing power such as the color yield (K/S value) of ramie fabric dyed with the supernatant of bath, the oxidation/reduction potential (ORP), and the pH values changed. When the initial pH was set at lower than 11 (10.2, 10.7), the baths adjusted to pH 11 showed better reducing power than the baths of pH other than 11. And also, when the initial pH was set higher than 11 (11.3 and 12.0), the baths adjusted to pH 11 showed better reducing power than the baths of pH other than 11. It took 5–11 days to reach the maximum dye uptake after the initiation of reduction, and, during the corresponding time, the ORP was from -563 to -599 mV. All the initial and the adjusted pH values were not maintained but decreased continuously, and the maximum dye uptake reached at pH 9.17-9.43. The initial and the adjusted pH greatly affected the indigo reducing power, and the highest color yield was obtained with indigo reduction bath of initial pH 10.7. When the pH of the bath was adjusted to pH 11.0, the maximum reducing power was obtained most efficiently. Also, for the pH adjustment, use of sodium hydroxide showed higher reducing power than use of calcium hydroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Blackburn, T. Bechtold, and P. John, Color. Technol., 125, 193 (2009).

    Article  CAS  Google Scholar 

  2. R. H. Clark, C. J. Cooksey, M. A. M. Daniels, and R. Withnall, Endeavour, 17, 191 (1993).

    Article  CAS  Google Scholar 

  3. A. Roessler, O. Dossenbach, U. Mayer, W. Marte, and P. Rys, Chimia, 55, 879 (2001).

    CAS  Google Scholar 

  4. M. A. Kulandainanthan, A. Muthukumaran, K. Patil, and R. B. Chavan, Dyes Pigm., 73, 47 (2007).

    Article  Google Scholar 

  5. A. Roessler, D. Crettenand, O. Dossenbach, W. Marte, and P. Rys, Electrochimica Acta, 47, 1989 (2002).

    Article  CAS  Google Scholar 

  6. A. Roessler, O. Dossenbach, and P. Rys, J. Electrochem. Soc., 150, D1 (2003).

    Article  CAS  Google Scholar 

  7. A. Roessler and D. Crettenand, Dyes Pigm., 63, 29 (2004).

    Article  CAS  Google Scholar 

  8. M. A. Sanromn, M. Pazos, M. T. Ricart, and C. Cameselle, Eng. Geo., 77, 253 (2005).

    Article  Google Scholar 

  9. A. Vuorema, P. John, M. Keskitalo, M. A. Kulandainathan, and F. Marken, Dyes Pigm., 76, 542 (2008).

    Article  CAS  Google Scholar 

  10. A. Vuorema, P. John, M. Keskitalo, M. F. Mahon, M. A. Kulandainathan, and F. Marken, Phys. Chem. Chem. Phys., 11, 1816 (2009).

    Article  CAS  Google Scholar 

  11. R. S. Blackburn and A. Harvey, Environ. Sci. Technol., 38, 4034 (2004).

    Article  CAS  Google Scholar 

  12. A. Vuorema, P. Jhon, M. Keskitalo, and F. Marken, J. Appl. Electrochem., 38, 1683 (2008).

    Article  CAS  Google Scholar 

  13. N. Meksi, M. B. Ticha, M. Kechida, and M. F. Mhenni, J. Clean. Prod., 24, 149 (2012).

    Article  CAS  Google Scholar 

  14. M. Božic, V. Kokol, and G. M. Guebitz, Text. Res. J., 79, 895 (2009).

    Article  Google Scholar 

  15. M. Božic, M. Diaz-Gonzalezb, T. Tzanov, G. M. Guebitz, and V. Kokol, Enzyme Microb. Technol., 45, 317 (2009).

    Article  Google Scholar 

  16. M. Božic, S. Pricelius, G. M. Guebitz, and V. Kokol, Appl. Microbiol. Biotechnol., 85, 563 (2010).

    Article  Google Scholar 

  17. S. K. Nicholson and P. John, Appl. Microbiol. Biotechnol., 68, 117 (2005).

    Article  CAS  Google Scholar 

  18. S. Park, J. Y. Ryu, J. Seo, and H. G. Hur, J. Kor. Soc. Appl. Biol. Chem., 55, 83 (2012).

    Article  CAS  Google Scholar 

  19. E. S. Choi, E. B. Lee, H. A, Choi, K. Son, G. J. Kim, and Y. Shin, Kor. Soc. Biotech. Bioeng. J., 28, 295 (2013).

    Google Scholar 

  20. Y. Shin, K. Son, and D. I. Yoo, Fiber. Polym., 17, 1000 (2016).

    Article  CAS  Google Scholar 

  21. A. Osimani, L. Aquilanti, G. Baldini, G. Silvestri, A. Butta, and F. Clementi, J. Ind. Microbiol. Biotechnol., 39, 1309 (2012).

    Article  CAS  Google Scholar 

  22. K. S. Kim, J. O. Park, B. H. Ryu, and H. S. Choi, Kor. J. Biotechnol. Bioeng., 11, 623 (1996).

    Google Scholar 

  23. J. S. Lee, E. H. Park, S. Y. Kwun, S. H. Yeo, and M. D. Kim, Kor. J. Microbiol. Biotechnol., 42, 202 (2014).

    Article  CAS  Google Scholar 

  24. Y. Lee and K. Kim, J. Life Sci., 16, 375 (2006).

    Article  Google Scholar 

  25. K. C. Jung, “Korean Traditional Indigo Dyeing”, Natural Dyeing Culture Center Press, Naju, 2014.

    Google Scholar 

  26. Y. Shin, K. Son, and D. I. Yoo, Color. Technol., 26, 237 (2014).

    Google Scholar 

  27. Y. Shin, K. Son, and D. I. Yoo, Fiber. Polym., 20, 80 (2019).

    Article  CAS  Google Scholar 

  28. R. Orij, S. Brul, and G. T. Smits, Biochim. Biophys. Acta, 1810, 933 (2011).

    Article  CAS  Google Scholar 

  29. M. Božic and V. Kokol, Dyes Pigm., 76, 299 (2008).

    Article  Google Scholar 

  30. J. Y. Kang and H. S. Ryu, J. Kor. Soc. Dyers Finishers, 13, 241 (2001).

    Google Scholar 

  31. Y. J. Jung, M. H. Lee, H. W. Choi, and E. P. Lee, J. Kor. Soc. Dyers Finishers, 12, 174 (2000).

    Google Scholar 

  32. J. N. Etters, and M. Hou, Text. Res. J., 61, 773 (1991).

    Article  CAS  Google Scholar 

  33. J. N. Etters, Text. Chem. Color., 27, 17 (1995).

    CAS  Google Scholar 

  34. R. A. Robinson and R. H. Stokes, “Electrolyte Solutions”, 2nd ed., Rev. London, Butterworths, 1968.

    Google Scholar 

  35. W. Kroutil, H. Mang, K. Edegger, and K. Faber, Curr. Opin. Chem. Bio., 8, 120 (2004).

    Article  CAS  Google Scholar 

  36. J. Y. Kang and H. S. Ryu, J. Korean Soc. Dyers Finishers, 11, 242 (1999).

    Google Scholar 

  37. S. Y. Lee, J. M. Oh, M. H. Baik, and Y. J. Lee, J. Miner. Soc. Korea, 24, 279 (2011).

    Article  Google Scholar 

  38. D. H. Oh, Y. H. Park, N. S. Kim, and J. P. Kim, J. Kor. Fiber Soc., 29, 123 (1992).

    Google Scholar 

  39. G. A. Baig, Ind. J. Fibre Text. Res., 37, 265 (2012).

    Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of the Korea Research Foundation (KRF) grant funded by the Korea government (MSIP) (No. 2017R1A2B4009555).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Younsook Shin or Dong Il Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, K., Shin, Y. & Yoo, D.I. Effect of pH Condition on Natural Indigo (Indigofera tinctoria) Reduction by Yeast (Saccharomyces cerevisiae). Fibers Polym 20, 2570–2580 (2019). https://doi.org/10.1007/s12221-019-9214-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9214-3

Keywords

Navigation