Skip to main content
Log in

Fabrication of Curcumin-loaded Gliadin Electrospun Nanofibrous Structures and Bioactive Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, the feasibility and potential of food-grade gliadin nanofiber as a delivery vehicle for curcumin were investigated. By optimizing the electrospinning parameters, homogeneous and fine gliadin nanofibers containing different amounts of curcumin were fabricated. It was observed that gliadin micro-nanoparticles were gradually transformed to gliadin nanofibers and thicker nanofibers were obtained with the increment of the gliadin concentration. The electrospun nanofibers were characterized in terms of morphological, molecular, thermal and crystallographic properties. Nanofibers were nearly uniform with smooth surface characteristics and their average diameter ranged between 258 to 375 nm. Encapsulation efficiency of gliadin nanofibers increased with the increment of curcumin loading, which was also confirmed by X-ray diffraction patterns revealing that the most part of curcumin could be encapsulated in gliadin nanofibers. In vitro assessments of nanofibers indicated that the curcumin-loaded gliadin nanofibers showed a controlled release of curcumin and protected its free radical scavenging ability. In addition, these nanofibers showed important levels of antibacterial activities against Staphylococcus aureus and Escherichia coli. Furthermore, the encapsulation of curcumin within nanofibers conspicuously enhanced the antioxidant and antibacterial activities of curcumin within these nanofibers. The results suggested that the gliadin nanofiber could be an available carrier for the delivery of curcumin and has the potential for applications in the food industry and other bioactive delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Park, L. Jeong, D. I. Yoo, and S. Hudson, Polymer, 45, 7151 (2004).

    Article  CAS  Google Scholar 

  2. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Int. J. Polym. Sci., 2011 (2011).

  3. R. M. Soares and V. Soldi, Mater. Sci. Eng.: C, 30, 691 (2010).

    Article  CAS  Google Scholar 

  4. C. Onwulata, Ann. Rev. Food Sci. Technol., 3, 183 (2012).

    Article  CAS  Google Scholar 

  5. L. Lamberts, I. J. Joye, T. Beliën, and J. A. Delcour, Food Chemistry, 130, 896 (2012).

    Article  CAS  Google Scholar 

  6. A. Matalanis, E. A. Decker, and D. J. McClements, Food Chemistry, 132, 766 (2012).

    Article  CAS  Google Scholar 

  7. C. Duclairoir, A.-M. Orecchioni, P. Depraetere, F. Osterstock, and E. Nakache, Int. J. Pharm., 253, 133 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. I. J. Joye, V. A. Nelis, and D. J. McClements, Food Hydrocolloids, 44, 86 (2015).

    Article  CAS  Google Scholar 

  9. R. M. Soares, V. L. Patzer, R. Dersch, J. Wendorff, N. P. da Silveira, and P. Pranke, Int. J. Biol. Macromol., 49, 480 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. M. A. Arangoa, M. A. Campanero, M. J. Renedo, G. Ponchel, and J. M. Irache, Pharm. Res., 18, 1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. M. P. Balaguer, P. Fajardo, H. Gartner, J. Gomez-Estaca, R. Gavara, E. Almenar, and P. Hernandez-Munoz, Int. J. Food Microbiol., 173, 62 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. C. Duclairoir, J. M. Irache, E. Nakache, A. M. Orecchioni, C. Chabenat, and Y. Popineau, Polym. Int., 48, 327 (1999).

    Article  CAS  Google Scholar 

  13. C. Duclairoir, A. Orecchioni, P. Depraetere, and E. Nakache, J. Microencapsul., 19, 53 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. I. Ezpeleta, J. M. Irache, S. Stainmesse, C. Chabenat, J. Gueguen, Y. Popineau, and A.-M. Orecchioni, Int. J. Pharm., 131, 191 (1996).

    Article  CAS  Google Scholar 

  15. M. Gulfam, J.-E. Kim, J. M. Lee, B. Ku, B. H. Chung, and B. G. Chung, Langmuir, 28, 8216 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. H. Kajal and A. Misra, J. Biomed. Nanotechnol., 7, 211 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. P. Fajardo, M. P. Balaguer, J. Gomez-Estaca, R. Gavara, and P. Hernandez-Munoz, Food Hydrocolloids, 41, 53 (2014).

    Article  CAS  Google Scholar 

  18. P. Vitaglione, R. Barone Lumaga, R. Ferracane, I. Radetsky, I. Mennella, R. Schettino, S. Koder, E. Shimoni, and V. Fogliano, J. Agricul. Food Chem., 60, 3357 (2012).

    Article  CAS  Google Scholar 

  19. F.-L. Yen, T.-H. Wu, C.-W. Tzeng, L.-T. Lin, and C.-C. Lin, J. Agricul. Food Chem., 58, 7376 (2010).

    Article  CAS  Google Scholar 

  20. O. A. K. Khalil, O. M. M. de Faria Oliveira, J. C. R. Vellosa, A. U. de Quadros, L. M. Dalposso, T. K. Karam, R. M. Mainardes, and N. M. Khalil, Food Chemistry, 133, 1001 (2012).

    Article  CAS  Google Scholar 

  21. S. Mishra, U. Narain, R. Mishra, and K. Misra, Bioorg. Med. Chem., 13, 1477 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Y. Chen, Q. Wu, Z. Zhang, L. Yuan, X. Liu, and L. Zhou, Molecules, 17, 5972 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D. Brahatheeswaran, A. Mathew, R. G. Aswathy, Y. Nagaoka, K. Venugopal, Y. Yoshida, T. Maekawa, and D. Sakthikumar, Biomed. Mater., 7, 045001 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. A. Goel, A. B. Kunnumakkara, and B. B. Aggarwal, Biochem. Pharmacol., 75, 787 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. S. Kaur, N. H. Modi, D. Panda, and N. Roy, Eur. J. Med. Chem., 45, 4209 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. D. Rai, J. K. Singh, N. Roy, and D. Panda, Biochem. J., 410, 147 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. M. Sharma, R. Manoharlal, N. Puri, and R. Prasad, Biosci. Rep., 30, 391 (2010).

    Article  Google Scholar 

  28. K. Neelofar, S. Shreaz, B. Rimple, S. Muralidhar, M. Nikhat, and L. A. Khan, Can. J. Microbiol., 57, 204 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. K. Ohara, W. Mizukami, A. Tokunaga, S.-I. Nagaoka, H. Uno, and K. Mukai, Bull. Chem. Soc. Japan, 78, 615 (2005).

    Article  CAS  Google Scholar 

  30. E. I. Paramera, S. J. Konteles, and V. T. Karathanos, Food Chemistry, 125, 913 (2011).

    Article  CAS  Google Scholar 

  31. I. Shlar, E. Poverenov, Y. Vinokur, B. Horev, S. Droby, and V. Rodov, Nano-Micro Letters, 7, 68 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. J. Gomez-Estaca, M. Balaguer, R. Gavara, and P. Hernandez-Munoz, Food Hydrocolloids, 28, 82 (2012).

    Article  CAS  Google Scholar 

  33. A. Patel, Y. Hu, J. K. Tiwari, and K. P. Velikov, Soft Matter, 6, 6192 (2010).

    Article  CAS  Google Scholar 

  34. N. Ramalingam, T. Natarajan, and S. Rajiv, J. Biomed. Mater. Res. Part A, 103, 16 (2015).

    Article  CAS  Google Scholar 

  35. Y. Lian, J.-C. Zhan, K.-H. Zhang, and X.-M. Mo, Front. Mater. Sci., 8, 354 (2014).

    Article  Google Scholar 

  36. A. Faralli, E. Shekarforoush, F. Ajalloueian, A. C. Mendes, and I. S. Chronakis, Carbohydr. Polym., 206, 38 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. G. Mutlu, S. Calamak, K. Ulubayram, and E. Guven, J. Drug Deliv. Sci. Technol., 43, 185 (2018).

    Article  CAS  Google Scholar 

  38. A. Alehosseini, L. G. Gómez-Mascaraque, M. Martínez-Sanz, and A. López-Rubio, Food Hydrocolloids, 87, 758 (2019).

    Article  CAS  Google Scholar 

  39. A. Kumar, L. Li, A. Chaturvedi, J. Brzostowski, J. Chittigori, S. Pierce, L. A. Samuelson, D. Sandman, and J. Kumar, Appl. Phys. Lett., 100, 203701 (2012).

    Article  CAS  Google Scholar 

  40. C. F. Chignell, P. Bilskj, K. J. Reszka, A. G. Motten, R. H. Sik, and T. A. Dahl, Photochem. Photobiol., 59, 295 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. S. M. Khopde, K. Indira Priyadarsini, D. K. Palit, and T. Mukherjee, Photochem. Photobiol., 72, 625 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. J. Yao, D. R. Larson, H. D. Vishwasrao, W. R. Zipfel, and W. W. Webb, Proc. Nat. Acad. Sci., 102, 14284 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. W. K. Surewicz, H. H. Mantsch, and D. Chapman, Biochemistry, 32, 389 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. L. Gu and M. Wang, J. Food Eng., 119, 288 (2013).

    Article  CAS  Google Scholar 

  45. S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, Polymer, 46, 3372 (2005).

    Article  CAS  Google Scholar 

  46. T. M. Kolev, E. A. Velcheva, B. A. Stamboliyska, and M. Spiteller, Int. J. Quantum Chem., 102, 1069 (2005).

    Article  CAS  Google Scholar 

  47. K. Hu, X. Huang, Y. Gao, X. Huang, H. Xiao, and D. J. McClements, Food Chemistry, 182, 275 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. C. S. Mangolim, C. Moriwaki, A. C. Nogueira, F. Sato, M. L. Baesso, A. M. Neto, and G. Matioli, Food Chemistry, 153, 361 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. P. K. Mohan, G. Sreelakshmi, C. Muraleedharan, and R. Joseph, Vibrational Spectroscopy, 62, 77 (2012).

    Article  CAS  Google Scholar 

  50. C. Mohanty and S. K. Sahoo, Biomaterials, 31, 6597 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. V. Ducel, J. Richard, P. Saulnier, Y. Popineau, and F. Boury, Colloids Surf. A Physicochem. Eng. Asp., 232, 239 (2004).

    Article  CAS  Google Scholar 

  52. K. Saravanan, C. Kalaiarasi, and P. Kumaradhas, J. Biomol. Struct. Dyn., 35, 3627 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. A. Kumar, G. Kaur, S. Kansal, G. R. Chaudhary, and S. Mehta, Food Chemistry, 199, 660 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. J. Shaikh, D. Ankola, V. Beniwal, D. Singh, and M. R. Kumar, Eur. J. Pharm. Sci., 37, 223 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. L. Ding, T. Lee, and C.-H. Wang, J. Control. Release, 102, 395 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. J. Xie, J. C. Marijnissen, and C.-H. Wang, Biomaterials, 27, 3321 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Y. Xu and M. A. Hanna, Int. J. Pharm., 320, 30 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. W. Cui, X. Li, X. Zhu, G. Yu, S. Zhou, and J. Weng, Biomacromolecules, 7, 1623 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. R. Dinarvand, S. Mahmoodi, E. Farboud, M. Salehi, and F. Atyabi, Acta Pharm, 55, 57 (2005).

    CAS  PubMed  Google Scholar 

  60. Z. Teng, Y. Li, and Q. Wang, J. Agricul. Food Chem., 62, 8837 (2014).

    Article  CAS  Google Scholar 

  61. K. I. Priyadarsini, D. K. Maity, G. Naik, M. S. Kumar, M. Unnikrishnan, J. Satav, and H. Mohan, Free Radic. Biol. Med., 35, 475 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. P. Venkatesan and M. Rao, J. Pharm. Pharmacol., 52, 1123 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. O. Suwantong, P. Opanasopit, U. Ruktanonchai, and P. Supaphol, Polymer, 48, 7546 (2007).

    Article  CAS  Google Scholar 

  64. H.-M. Chen, K. Muramoto, F. Yamauchi, K. Fujimoto, and K. Nokihara, J. Agricul. Food Chem., 46, 49 (1998).

    Article  CAS  Google Scholar 

  65. B. Hernández-Ledesma, L. Amigo, I. Recio, and B. Bartolomé, J. Agricul. Food Chem., 55, 3392 (2007).

    Article  CAS  Google Scholar 

  66. E. A. Peña-Ramos, Y. L. Xiong, and G. E. Arteaga, J. Sci. Food Agric., 84, 1908 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perihan Kubra Akman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akman, P.K., Bozkurt, F., Balubaid, M. et al. Fabrication of Curcumin-loaded Gliadin Electrospun Nanofibrous Structures and Bioactive Properties. Fibers Polym 20, 1187–1199 (2019). https://doi.org/10.1007/s12221-019-8950-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8950-8

Keywords

Navigation