Skip to main content
Log in

Influence of the draw ratio on the mechanical properties and electrical conductivity of nanofilled thermoplastic polyurethane fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrically conducting textile fibers were produced by wet-spinning under various volume fractions using thermoplastic polyurethane (TPU) as a polymer and carbon black (CB), Ag-powder, multi-walled carbon nanotubes (MWCNTs), which are widely used as electrically conducting nanofillers. After applying the fiber to the heat drawing process at different draw ratios, the filler volume fraction, linear density, breaking to strength, and electrical conductivity according to each draw ratio and volume fraction. In addition, scanning electron microscopy (SEM) images were taken. The breaking to strength of the TPU fiber containing the nanofillers increased with increasing draw ratio. At a draw ratio of 2.5, the breaking to strength of the TPU fiber increased by 105 % for neat-TPU, 88 % for CB, 86 % for Ag-powder, and 127 % for MWCNT compared to the undrawn fiber. The breaking to strength of the TPU fiber containing CB decreased gradually with increasing volume fraction, and in case of Ag-powder, it decreased sharply owing to its specific gravity. The electrical conductivity of the TPU fiber containing CB and Ag-powder decreased with increasing draw ratio, but the electrical conductivity of the TPU fiber containing MWCNT increased rapidly after the addition of 1.34 vol. % or over. The moment when the aggregation of MWCNT occurred and its breaking to strength started to decrease was determined to be the percolation threshold of the electrical conductivity. The heat drawing process of the fiber-form material containing the anisotropic electrical conductivity nanofillers make the percolation threshold of the electrical conductivity and the maximum breaking to strength appear at a lower volume fraction. This is effective in the development of a breaking to strength and electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bilotti, H. Zhang, H. Deng, R. Zhang, Q. Fu, and T. Peijs, Compos. Sci. Technol., 74, 85 (2013).

    Article  CAS  Google Scholar 

  2. E. Bilotti, R. Zhang, H. Deng, M. Baxendale, and T. Peijs, J. Mater. Chem., 20, 9449 (2010).

    Article  CAS  Google Scholar 

  3. S. Razdan, P. K. Patra, S. Kar, L. Ci, R. Vajtai, A. Kukovecz, Z. Konya, L. Kiricsi, and P. Ajayan, Chem. Mater., 21, 3062 (2009).

    Article  CAS  Google Scholar 

  4. T. W. Chou and E. T. Thostenson, Adv. Mater., 18, 2837 (2006).

    Article  Google Scholar 

  5. O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, and H. Warth, Polymer, 45, 739 (2004).

    Article  CAS  Google Scholar 

  6. H. D. Bao, Z. X. Guo, and J. Yu, Polymer, 49, 3826 (2008).

    Article  CAS  Google Scholar 

  7. H. Deng, R. Zhang, C. T. Reynolds, E. Bilotti, and T. Peijs, Macromol. Mater. Eng., 294, 749 (2009).

    Article  CAS  Google Scholar 

  8. M. Park, H. Kim, and J. P. Youngblood, Nanotechnology, 19, 055705 (2008).

    Article  Google Scholar 

  9. J. Shen, M. F. Champagne, R. Gendron, and S. Guo, Eur. Polym. J., 48, 930 (2012).

    Article  CAS  Google Scholar 

  10. F. M. Blighe, K. Young, J. J. Vilatela, A. H. Windle, I. A. Kinloch, L. Deng, R. J. Young, and J. N. Coleman, Adv. Funct. Mater., 21, 364 (2011).

    Article  CAS  Google Scholar 

  11. J. Chen, X. C. Du, W. B. Zhang, J. H. Yang, N. Zhang, T. Huang, and Y. Wang, Compos. Sci. Technol., 81, 1 (2013).

    Article  CAS  Google Scholar 

  12. M. Narkis, E. Segal, and R. Tchoudakov, Polym. Eng. Sci., 42, 2430 (2002).

    Article  Google Scholar 

  13. H. Yang, J. Gong, X. Wen, J. Xue, Q. Chen, Z. Jiang, N. Tian, and T. Tang, Compos. Sci. Technol., 113, 31 (2015).

    Article  CAS  Google Scholar 

  14. S. D. A. S. Ramoa, G. M. O. Barra, R. V. B. Oliveira, M. G. de Oliveira, M. Cossa, and B. G. Soares, Polym. Int., 62, 1477 (2013).

    Article  CAS  Google Scholar 

  15. J. Sumfleth, X. C. Adroher, and K. Schulte, J. Mater. Sci., 44, 3241 (2009).

    Article  CAS  Google Scholar 

  16. I. Novak, L. Krupa, and I. Chodak, Synth. Met., 144, 13 (2011).

    Article  Google Scholar 

  17. M. H. Al-Saleh and U. Sundararaj, Carbon, 47, 2 (2009).

    Article  CAS  Google Scholar 

  18. B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, and G. D. With, Powder Technol., 221, 351 (2012).

    Article  CAS  Google Scholar 

  19. S. Kwon, R. Ma, U. Kim, H. R. Choi, and S. Baik, Carbon, 68, 118 (2014).

    Article  CAS  Google Scholar 

  20. J. Xiong, Z. Zheng, X. Qin, M. Li, H. Li, and X. Wang, Carbon, 44, 2701 (2006).

    Article  CAS  Google Scholar 

  21. H. Koerner, W. Liu, M. Alexander, P. Mirau, H. Dowty, and R. A. Vaia, Polymer, 46, 4405 (2005).

    Article  CAS  Google Scholar 

  22. W. Chen, X. Tao, and Y. Liu, Compos. Sci. Technol., 66, 3029 (2006).

    Article  CAS  Google Scholar 

  23. D. X. Yan, K. Dai, Z. D. Xiang, Z. M. Li, X. Ji, and W. Q. Zhang, J. Appl. Polym. Sci., 120, 3014 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joon Seok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.W., Lee, J.S. Influence of the draw ratio on the mechanical properties and electrical conductivity of nanofilled thermoplastic polyurethane fibers. Fibers Polym 18, 81–87 (2017). https://doi.org/10.1007/s12221-017-6387-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-6387-5

Keywords

Navigation