Skip to main content
Log in

GF/CF hybrid laminates made through intra-tow hybridization for automobile applications

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Among the drawbacks that the composites entirely reinforced with carbon fibers have, low strain-to-failure and catastrophic failure behaviour are the most undesirable ones. Nonetheless, in many industries for example in automobile industries, the necessity of light-weight structures with a balanced cost is unquestionable. Hybridization of glass fibers with carbon fibers could be an effective way to improve the strain-to-failure of composites entirely reinforced carbon fibers and therefore, a balance between the stiffness and toughness could be improved without excessive cost. In this paper, for automobile applications it is proposed to selectively incorporate the glass and carbon fibers through intra-layer hybridization technique. It is also proposed to mix the fibers as intimately as possible. This paper investigates the influences of hybrid ratio and laminate geometry on tensile mechanical properties both computationally and experimentally- and they have been found to have significant influences on tensile properties and hence should be treated as most crucial parameters. The brittle and catastrophic failure of plain carbon composite was avoided through intra-tow hybridization with higher dispersion. Damage mechanism has been explained and SEM observations were carried out for morphology analysis. Vacuum assisted resin infusion process is also recommended to attain high quality of impregnation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Oya and H. Hamada, Sci. Eng. Compos. Mater., 5, 105 (1996).

    Article  Google Scholar 

  2. C. Dong and I. J. Davies, J. Mater. Des. Appl., 227, 308 (2013).

    CAS  Google Scholar 

  3. S. M. B. Sudarisman and I. J. Davies, Proc. Intl. Confer. Mater. Metallurgical Technol., pp.125–128, 2009.

    Google Scholar 

  4. N. Oya and D. J. Johnson, Carbon, 39, 635 (2001).

    Article  CAS  Google Scholar 

  5. I. J. Davies, Adv. Mater. Res., 41, 357 (2008).

    Google Scholar 

  6. M. Shioya and M. Nakatani, Compos. Sci. Technol., 60, 219 (2000).

    Article  CAS  Google Scholar 

  7. P. Manders and M. Bader, J. Mater. Sci., 16, 2233 (1981).

    Article  CAS  Google Scholar 

  8. A. Bunsell and B. Harris, Composites, 5, 157 (1974).

    Article  Google Scholar 

  9. C. Zweben, J. Mater. Sci., 12, 1325 (1977).

    Article  CAS  Google Scholar 

  10. G. Marom, S. Fischer, F. R. Tuler, and H. D. Wagner, J. Mater. Sci., 13, 1419 (1978).

    Article  CAS  Google Scholar 

  11. D. R. Cramer and D. F. Taggart, Proc. 19th Inter. Battery. Hybrid. Fuel Cell Electric Vehicle Symp. Exhibit., 2002.

    Google Scholar 

  12. P. Beardmore and C. F. Johnson, Compos. Sci. Technol., 26, 251 (1986).

    Article  CAS  Google Scholar 

  13. G. Thilagavathi, E. Pradeep, T. Kannaian, and L. Sasikala, J. Ind. Text., 39, 267 (2010).

    Article  CAS  Google Scholar 

  14. S. Das, Oak Ridge National Laboratory, Oak Ridge, TN, 2001.

    Google Scholar 

  15. H. A. Al-Qureshi, J. Mater. Process. Technol., 118, 58 (2001).

    Article  CAS  Google Scholar 

  16. R. Hosseinzadeh, M. M. Shokrieh, and L. B. Lessard, Compos. Struct., 68, 419 (2005).

    Article  Google Scholar 

  17. N. Tucker and K. Lindsey, An Introduction to Automotive Composites. iSmithers Rapra Publishing, 2002.

    Google Scholar 

  18. A. Jacob, Reinf. Plast., 45, 28 (2001).

    Article  Google Scholar 

  19. Z. Z. S. Huanchun, Beijing University of Aeronautics and Astronautics, Chap 4, 1988.

    Google Scholar 

  20. A. K. Kaw, Mecha. Compos. Mater., 2nd ed., Tampa: CRC press, Taylor & Francis Group, 2005.

    Google Scholar 

  21. M. Grujicic, B. Pandurangan, K. L. Koudela, and B. A. Cheeseman, Appl. Surf. Sci., 253, 730 (2006).

    Article  CAS  Google Scholar 

  22. S. Y. Fu, Y. W. Mai, B. Lauke, and C. Y. Yue, Mater. Sci. Eng. A-Struct. Mater. Prop., 323, 326 (2002).

    Article  Google Scholar 

  23. J. W. Giancaspro, C. G. Papakonstantinou, and P. Balaguru, J. Eng. Mater. Technol., 132, 021005 (2010).

    Article  Google Scholar 

  24. S. F. Hwang and C. P. Mao, Compos. Sci. Technol., 61, 1513 (2001).

    Article  Google Scholar 

  25. G. Kretsis, Composites, 18, 13 (1987).

    Article  CAS  Google Scholar 

  26. K. S. Pandya, C. Veerraju, and N. Naik, Mater. Des., 32, 4094 (2011).

    Article  CAS  Google Scholar 

  27. Y. Zhang, Y. Li, H. Ma, and T. Yu, Compos. Sci. Technol., 88, 172 (2013).

    Article  CAS  Google Scholar 

  28. P. Ren, Z. Zhang, L. Xie, F. Ren, Y. Jin, Y. Di, and C. Fang, Polym. Compos., 31, 2129 (2010).

    Article  CAS  Google Scholar 

  29. C. Dong, J. Duong, and I. J. Davies, Polym. Compos., 33, 773 (2012).

    Article  CAS  Google Scholar 

  30. C. Dong and I. J. Davies, Mater. Des., 37, 450 (2012).

    Article  CAS  Google Scholar 

  31. M. Sayer, N. B. Bektas, and O. Sayman, Compos. Struct., 1256 (2010).

    Google Scholar 

  32. Z. S. Wu, X. Wang, K. Iwashita, T. Sasaki, and Y. Hamaguchi, Compos. Pt. B-Eng., 41, 396 (2010).

    Article  Google Scholar 

  33. A. Goren and C. Atas, Archiv. Mater. Sci. Eng., 34, 117 (2008).

    Google Scholar 

  34. C. Dong, H. A. Ranaweera-Jayawardena, and I. J. Davies, Compos. Pt. B-Eng., 43, 573 (2012).

    Article  CAS  Google Scholar 

  35. P. N. B. Reis, J. A. M. Ferreira, F. V. Antunes, and J. D. M. Costa, Compos. Pt. A-Appl. Sci. Manuf., 38, 1612 (2007).

    Article  Google Scholar 

  36. Z. Hashin, J. Appl. Mecha., 47, 329 (1980).

    Article  Google Scholar 

  37. S. Chan, Z. Fawaz, K. Behdinan, and R. Amid, Compos. Struct., 77, 466 (2007).

    Article  Google Scholar 

  38. Z. Hashin and A. Rotem, J. Compos. Mater., 7, 448 (1973).

    Article  Google Scholar 

  39. M. L. Costa, S. F. M. D. Almeida, and M. C. Rezende, Compos. Sci. Technol., 61, 2101 (2001).

    Article  CAS  Google Scholar 

  40. J. M. Tang, W. I. Lee, and G. S. Springer, J. Compos. Mater., 21, 421 (1987).

    Article  CAS  Google Scholar 

  41. L. Liu, B. M. Zhang, D. F. Wang, and Z. J. Wu, Compos. Struct., 73, 303 (2006).

    Article  Google Scholar 

  42. S. R. Ghiorse, Sampe Quarterly, 1, 54 (1993).

    Google Scholar 

  43. J. Zhang, K. Chaisombat, S. He, and C. H. Wang, Mater. Des., 36, 75 (2012).

    Article  CAS  Google Scholar 

  44. H. Ikbal, Q. Wang, A. Azzam, and W. Li, Fiber. Polym., 17, 117 (2016).

    Article  CAS  Google Scholar 

  45. G. Czél and M. Wisnom, Compos. Pt. A-Appl. Sci. Manuf., 52, 23 (2013).

    Article  Google Scholar 

  46. Y. You, Y. Park, H. Y. Kim, and J. S. Park, Compos. Struct., 80, 117 (2007).

    Article  Google Scholar 

  47. H. Diao, A. Bismarck, P. Robinson, and M. R. Wisnom, Proceedings of ECCM, 2012.

    Google Scholar 

  48. I. Taketa, PhD. Thesis, Leuven: KU Leuven, 2011.

    Google Scholar 

  49. P. K. Mallick, Fiber-reinforced Composites: Materials, Manufacturing, and Design, 2nd ed., pp.243–244, CRC Press, 2007.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikbal, H., Wang, Q., Azzam, A. et al. GF/CF hybrid laminates made through intra-tow hybridization for automobile applications. Fibers Polym 17, 1505–1521 (2016). https://doi.org/10.1007/s12221-016-5953-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5953-6

Keywords

Navigation