Skip to main content
Log in

Mechanical response and failure of 3D MWK carbon/epoxy composites at cryogenic temperature

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Static tensile and bending experiments are conducted on 3D MWK carbon/epoxy composites with two types of fiber architecture at room and cryogenic temperature (low as −196 ℃). Macro-Fracture morphology and SEM micrographs are examined to understand the deformation and failure mechanism. The results show that tensile stress vs. strain curves have linear elastic feature up to failure; while the load-deflection curves for composites with large fiber orientation angle have pronounced nonlinear and failure in steps. Meanwhile, tensile and bending properties at liquid nitrogen temperature have been improved significantly. Moreover, the properties can be affected greatly by the fiber architecture and these decrease with increasing fiber orientation angle at room and cryogenic temperatures. The results also show the damage and failure patterns of composites vary with the fiber architecture and temperature. The main failure for material A is 0 ° fibers fracture and matrix cracking. The failure mechanism for material B is the delamination, 90 °/+45 °/−45 ° fiber/matrix interface debonding and fibers tearing, as well as 0 ° fibers’ breakage. At cryogenic temperature, the matrix is solidified and the interfacial adhesion between fibers and matrix is enhanced significantly. However, the brittle failure becomes more obvious, more microcracks propagate and interpenetrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Leong, S. Ramakrishna, and Z. M. Huang, Compos. Pt. A-Appl. Sci. Manuf., 31, 197 (2000).

    Article  Google Scholar 

  2. W. Hufenbach, R. Böhm, and M. Thieme, Mater. Des., 32, 1468 (2011).

    Article  CAS  Google Scholar 

  3. Y. H. Xu, X. L. Yuan, N. Wang, and Z. L. Liu, Fiber. Polym., 15, 1288 (2014).

    Article  CAS  Google Scholar 

  4. P. B. Ma, G. M. Jiang, Z. Gao, Q. Zhang, and D. Xia, Fiber. Polym., 15, 382 (2014).

    Article  Google Scholar 

  5. G. W. Du and F. Ko, Compos. Sci. Technol., 56, 253 (1996).

    Article  Google Scholar 

  6. G. A. Bibo, P. J. Hogg, and M. Kemp, Compos. Sci. Technol., 57, 1221 (1997).

    Article  CAS  Google Scholar 

  7. H. Kong, A. P. Mouritz, and R. Paton, Compos. Struct., 66, 249 (2004).

    Article  Google Scholar 

  8. F. Edgren, D. Mattsson, and L. E. Asp, Compos. Sci. Technol., 64, 675 (2004).

    Article  Google Scholar 

  9. F. Edgren and L. E. Asp, Compos. Pt. A-Appl. Sci. Manuf., 36, 173 (2005).

    Article  Google Scholar 

  10. D. Mattsson, R. Joffe, and J. Varna, Eng. Fract. Mech., 75, 2666 (2008).

    Article  Google Scholar 

  11. R. X. Zhou, H. Hu, and N. L. Chen, J. Compos. Mater., 39, 525 (2005).

    Article  Google Scholar 

  12. H. Saito and I. Kimpara, Compos. Pt. A-Appl. Sci. Manuf., 37, 2226 (2006).

    Article  Google Scholar 

  13. B. Z. Sun, H. Hu, and B. H. Gu, Compos. Struct., 78, 84 (2007).

    Article  Google Scholar 

  14. K. Vallons, M. Zong, S. V. Lomov, and I. Verpoest, Compos. Pt. A-Appl. Sci. Manuf., 38, 1633 (2007).

    Article  Google Scholar 

  15. D. S. Li, N. Jiang, C. Q. Zhao, L. Jiang, and Y. Tan, Compos. Pt. B-Eng., 68, 126 (2015).

    Article  CAS  Google Scholar 

  16. S. V. Lomov, M. Barburski, T. Stoilova, I. Verpoest, R. Akkerman, R. Loendersloot, and R. T. Thije, Compos. Pt. A-Appl. Sci. Manuf., 36, 1188 (2005).

    Article  Google Scholar 

  17. S. V. Lomov, D. S. Ivanov, T. C. Truong, I. Verpoest, F. Baudry, K. Vanden, and H. Xie, Compos. Sci. Technol., 68, 2340 (2008).

    Article  CAS  Google Scholar 

  18. K. Vallons, S. V. Lomov, and I. Verpoest, Compos. Pt. AAppl. Sci. Manuf., 40, 251 (2009).

    Article  Google Scholar 

  19. D. S. Li, C. Q. Zhao, L. Jiang, N. Lu, L. M. Chen, and N. Jiang, Polym. Compos., 35, 1294 (2014).

    Article  CAS  Google Scholar 

  20. D. S. Li, N. Jiang, C. Q. Zhao, L. Jiang, and Y. Tan, Cryogenics, 62, 37 (2014).

    Article  CAS  Google Scholar 

  21. Y. Shindo, T. Takeda, and F. Narita, Cryogenics, 50, 564 (2012).

    Article  Google Scholar 

  22. T. Takeda, Y. Shindo, and S. Watanabe, Cryogenics, 52, 784 (2012).

    Article  CAS  Google Scholar 

  23. M. Gong, X. F. Wang, and J. H. Zhao, Cryogenics, 47, 1 (2007).

    Article  CAS  Google Scholar 

  24. W. Hufenbach, M. Gude, R. Böhm, and M. Zscheyge, Mater. Des., 32, 4278 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dian-sen Li or Nan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ds., Duan, Hw., Jiang, N. et al. Mechanical response and failure of 3D MWK carbon/epoxy composites at cryogenic temperature. Fibers Polym 16, 1349–1361 (2015). https://doi.org/10.1007/s12221-015-1349-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1349-2

Keywords

Navigation