Skip to main content
Log in

Fabrication and characterization study of electrospun quantum dot — poly vinyl alcohol composite nanofiber for novel engineering applications

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

CdTe quantum dot/PVA (poly vinyl alcohol) composite nanofiber was successfully fabricated by eletrospinning process. CdTe quantum dots were uniformly dispersed and stabilized into solid nanofiber structure. Spectrofluorometer analysis revealed whenever Q.D’s enter to the PVA solution, due to the aggregation of Q.D’s red shift happens; however, when blend Q.D-PVA solution changes to nanofiber form via electrospining, this shift phenomenon offsets and original fluorescence properties of Q.D’s does not degraded due to excellent individual dispersion of Q.D in the nanofibers structure. It is also turned out that the proportion of Q.D’s incorporated in the composite solution of electrospining has strong influence on the nanofiber morphology. Addition of Q.D’s to PVA solution causes remarkable changes in the conductivity and solution viscosity, therefore different nanofiber morphologies can be obtained as evidenced by scanning electron microscopy. Furthermore, differential scanning calorimetric (DSC) revealed addition of small amount of Q.D’s to the electrospining solution causes strenuous improvement in crystalinity and heat of nanofiber fusion. Fluorescence and transmission electron microscopy (TEM) measurements confirmed the evenly dispersion of the Q.D’s into nanofibers structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. Manuela and N. Chaniotakis, Sensors, 9, 7266 (2009).

    Article  Google Scholar 

  2. S. Schlecht, S. Tan, M. Yosef, R. Dersch, J. H. Wendorff, Z. Jia, and A. Schaper, Chem. Mater., 17, 809 (2005).

    Article  CAS  Google Scholar 

  3. R. P. Raffaelle, S. L. Castro, A. F. Hepp, and S. G. Bailey, Prog. Photovolt: Res. Appl., 10, 433 (2002).

    Article  CAS  Google Scholar 

  4. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc., 128, 2385 (2006).

    Article  CAS  Google Scholar 

  5. B. Ding, M. Wang, J. Yu, and G. Sun, Sensors, 9, 1609 (2009).

    Article  CAS  Google Scholar 

  6. A. G. Kanani, S. H. Bahrami, H. A. Taftei, S. Rabbani, and M. Sotoudeh, IET Nanobiotechnol., 4, 109 (2010).

    Article  CAS  Google Scholar 

  7. S. Choi, Y. Lee, C. Joo, S. Lee, J. Park, and K. Han, Electrochim. Acta, 50, 339 (2004).

    Article  CAS  Google Scholar 

  8. K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa, and S. Shiratori, Nanotechnology, 17, 1026 (2006).

    Article  CAS  Google Scholar 

  9. E. Kenawy, G. Bowlin, K. Mansfield, J. Layman, D. Simpson, E. Sanders, and G. Wnek, J. Control. Release, 81, 57 (2002).

    Article  CAS  Google Scholar 

  10. X. Wang, C. Drew, S. H. Lee, K. J. Senecal, J. Kumar, and L. A. Samuelson, Nano Letter., 2, 1273 (2002).

    Article  CAS  Google Scholar 

  11. R. Tatavarty, E. T. Hwang, J. W. Park, J. H. Kwak, J. O. Lee, and M. B. Gu, React. Funct. Polym., 71, 104 (2011).

    Article  CAS  Google Scholar 

  12. M. Hajra, K. Mehta, and G. Chase, Sep. Purif. Technol., 30, 79 (2003).

    Article  CAS  Google Scholar 

  13. R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, Polym. Advan. Technol., 16, 276 (2005).

    Article  CAS  Google Scholar 

  14. B. Ding, H. Kim, S. Lee, D. Lee, and K. Choi, Fiber. Polym., 3, 73 (2002).

    Article  CAS  Google Scholar 

  15. B. S. Kim, H. M. Song, C. S. Lee, S. G. Lee, and Y. A. Son, Fiber. Polym., 9, 534 (2008).

    Article  CAS  Google Scholar 

  16. J. Zhu, S. Wei, R. Patil, D. Rutman, A. S. Kucknoor, A. Wang, and Z. Guo, Polymer, 52, 1954 (2011).

    Article  CAS  Google Scholar 

  17. M. E. Mackay, T. T. Dao, A. Tuteja, D. L. Ho, B. V. Horn, and H. C. Kim, Nat. Mater., 2, 762 (2003).

    Article  CAS  Google Scholar 

  18. A. Tuteja, P. M. Duxbury, and M. E. Mackay, Macromolecules, 40, 9427 (2007).

    Article  CAS  Google Scholar 

  19. C. Roberts, T. Cosgrove, R. G. Schmidt, and G. V. Gordon, Macromolecules, 34, 538 (2001).

    Article  CAS  Google Scholar 

  20. M. Li, J. Zhang, H. Zhang, Y. Liu, C. Wang, X. Xu, Y. Tang, and B. Yang, Adv. Funct. Mater., 17, 3650 (2007).

    Article  Google Scholar 

  21. W. F. Billmeyer Jr., “Textbook of Polymer Science”, pp.238–290, Wiley, Singapore, 2000.

    Google Scholar 

  22. S. Mondal and J. L. Hu, J. Appl. Polym. Sci., 103, 3370 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mousavi Shoushtari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmoudifard, M., Shoushtari, A.M. & Mohsenifar, A. Fabrication and characterization study of electrospun quantum dot — poly vinyl alcohol composite nanofiber for novel engineering applications. Fibers Polym 13, 1031–1036 (2012). https://doi.org/10.1007/s12221-012-1031-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-012-1031-x

Keywords

Navigation