Skip to main content
Log in

Toward Weighted Lorentz–Sobolev Capacities from Caffarelli–Silvestre Extensions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Getting inspired by the Caffarelli–Silvestre extensions, this paper investigates the weighted Lorentz–Sobolev capacities and their capacitary strong inequalities with applications to the Sobolev-type embeddings. Consequently, the weighted Lebesgue-Sobolev capacities and their applications to a functional inequality problem and the existence-regularity of solutions to the prototype p-Laplace equations with weight are addressed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: Weighted nonlinear potential theory. Trans. Am. Math. Soc. 297, 73–94 (1986)

    Article  MathSciNet  Google Scholar 

  2. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996)

    Google Scholar 

  3. Ambrosio, L., Philippis, G.D., Martinazzi, L.: Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math. 134, 377–403 (2011)

    Article  MathSciNet  Google Scholar 

  4. Björn, J.: A Wiener criterion for the fractional Laplacian. arXiv: 2107.04364

  5. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston, MA (1988)

  6. Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners. Universitext, Springer, London, Existence Results via the Variational Approach (2011)

  7. Besoy, B.F., Cobos, F., Triebel, H.: On function spaces of Lorentz-Sobolev type. Math. Ann. 381, 807–839 (2021)

    Article  MathSciNet  Google Scholar 

  8. Breit, D., Cianchi, A., Diening, L., Schwarzacher, S.: Global Schauder estimates for the \(p\)-Laplace system. Arch. Ration. Mech. Anal. 243, 201–255 (2022)

    Article  MathSciNet  Google Scholar 

  9. Brezis, H., Van Schaftingen, J., Yung, P.-L.: Going to Lorentz when fractional Sobolev, Gagliardo and Nirenberg estimates fail. Calc. Var. Partial Differ. Equ. 60, Paper No. 129 (2021)

  10. Caffarelli, L., Roquejoffre, J., Savin, O.: Non-local minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    Article  Google Scholar 

  11. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  12. Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz Spaces and weighted inequalities. Mem. Am. Math. Soc. 187(877) (2007)

  13. Castillo, R.E., Chaparro, H.C.: Classical and Multidimensional Lorentz Spaces. De Gruyter, Berlin (2021)

    Book  Google Scholar 

  14. Chang, D.-C., Xiao, J.: \(L^q\)-Embeddings of \(L^p\)-spaces by fractional diffusion equations. Discret. Contin. Dyn. Syst. 35, 1905–1920 (2015)

    Article  Google Scholar 

  15. Chang, S.-Y., González, M.M.: Fractional Laplacian in conformal geometry. Adv. Math. 226, 1410–1432 (2011)

    Article  MathSciNet  Google Scholar 

  16. Chua, S.: Extension theorems on weighted Sobolev spaces. Indiana Univ. Math. J. 41, 1027–1076 (1992)

    Article  MathSciNet  Google Scholar 

  17. Chua, S., Wheeden, R.: Estimates of best constants for weighted Poincaré inequalities on convex domains (English summary). Proc. Lond. Math. Soc. 3(93), 197–226 (2006)

    Article  Google Scholar 

  18. Chung, H.-M., Hunt, R.A., Kurtz, D.S.: The Hardy-Littlewood maximal function on \(L(p, q)\) spaces with weights. Indiana Univ. Math. J. 31, 109–120 (1982)

    Article  MathSciNet  Google Scholar 

  19. Costea, S., Maz’ya, V.: Conductor Inequalities and Criteria for Sobolev-Lorentz Two-Weight Inequalities, (English Summary) Sobolev Spaces in Mathematics. II, 103-121. International Mathematical Series (N. Y.), vol. 9, Springer, New York (2009)

  20. Evans, L.C.: Partial Differential Equations, Second edition, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (2010)

  21. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. C. R. C. Press Inc, London (1992)

    Google Scholar 

  22. Eymard, R., Maltese, D., Prignet, A.: Weighted \(p\)-Laplace approximation of linear and quasi-linear elliptic problems with measure data. J. Differ. Equ. 330, 208–236 (2022)

    Article  MathSciNet  Google Scholar 

  23. Fu, X., Xiao, J.: An uncertainty principle on the Lorentz spaces. Nonlinear Anal. 237, Paper No. 113367 (2023)

  24. Fusco, N., Millot, V., Morini, M.: A quantitative isoperimetric inequality for fractional perimeters. J. Funct. Anal. 26, 697–715 (2011)

    Article  MathSciNet  Google Scholar 

  25. Garain, P., Mukherjee, T.: On a class of weighted \(p\)-Laplace equation with singular nonlinearity. Mediterr. J. Math. 17, 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  26. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton, NJ (1983)

    Google Scholar 

  27. Goodman, J., Spector, D.: Some remarks on boundary operators of Bessel extensions. Discret. Contin. Dyn. Syst. S 11, 493–509 (2018)

    MathSciNet  Google Scholar 

  28. Grafakos, L.: Classical Fourier Analysis, 3rd edn. Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

  29. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, Oxford Mathematical Monographs (1993)

  30. Hernández Santamaría, V., Salda\({\tilde{{\rm n}}}\)a, A.: Small order asymptotics for nonlinear fractional problems. Calc. Var. Partial Differ. Equ. 61, Paper No. 92 (2022)

  31. Kilpeläinen, T.: Hölder continuity of solutions to quasilinear elliptic equations involving measures. Potential Anal. 3, 265–272 (1994)

    Article  MathSciNet  Google Scholar 

  32. Li, P., Shi, S., Hu, R., Zhai, Z.: Embeddings of function spaces via the Caffarelli-Silvestre extension, capacities and Wolff potentials. Nonlinear Anal. 217, 112758 (2022)

    Article  MathSciNet  Google Scholar 

  33. Lindqvist, P.: Notes on the \(p\)-Laplace Equation, Report, University of Jyväskylä Department of Mathematics and Statistics, vol. 102. University of Jyväskylä, Jyväskylä (2006)

  34. Lindqvist, P.: Notes on the Stationary \(p\)-Laplace Equation. SpringerBriefs in Mathematics, Springer, Cham (2019)

  35. Liu, L., Sun, Y., Xiao, J.: Quasilinear Laplace equations and inequalities with fractional orders. Math. Ann. 388, 1–60 (2024)

    Article  MathSciNet  Google Scholar 

  36. Liu, L., Wu, S., Xiao, J., Yuan, W.: The logarithmic Sobolev capacity, Adv. Math. 392, Paper No. 107993 (2021)

  37. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, vol. 51. American Mathematical Society (1997)

  38. Maremonti, P.: A remark on the Stokes problem in Lorentz spaces. Discret. Contin. Dyn. Syst. S 6, 1323–1342 (2013)

    MathSciNet  Google Scholar 

  39. Maz’ya, V.G.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Second, Revised and Augmented Edition, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342. Springer, Heidelberg (2011)

  40. Maz’ya, V.G., Havin, V.P.: Nonlinear potential theory. Usp. Mat. Nauk 27, 67–138 (in Russian), English translation. Russian Math. Surveys 27(1972), 71–148 (1972)

  41. Metafune, G., Negro, L., Spina, C.: \(L^p\) estimates for the Caffarelli-Silvestre extension operators. J. Differ. Equ. 316, 290–345 (2022)

    Article  Google Scholar 

  42. Miller, N.: Weighted Sobolev spaces and pseudodifferential operators with smooth symbols. Trans. Am. Math. Soc. 269, 91–109 (1982)

    Article  MathSciNet  Google Scholar 

  43. Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Am. Math. Soc. 192, 261–274 (1974)

    Article  MathSciNet  Google Scholar 

  44. Nguyen, V.H.: Sharp weighted Sobolev and Gagliardo-Nirenberg inequalities on half-spaces via mass transport and consequences. Proc. Lond. Math. Soc. 111, 127–148 (2015)

    Article  MathSciNet  Google Scholar 

  45. Nguyen, V.: Some trace Hardy type inequalities and trace Hardy-Sobolev-Maz’ya type inequalities. J. Funct. Anal. 270, 4117–4151 (2016)

    Article  MathSciNet  Google Scholar 

  46. Nguyen, V.: Sharp weighted Sobolev and Gagliardo-Nirenberg inequalities on half-spaces via mass transport and consequences (English summary). Proc. Lond. Math. Soc. (3) 111(1), 127–148 (2015)

    Article  MathSciNet  Google Scholar 

  47. O’Neil, R.: Convolution operators and \(L(p, q)\) spaces. Duke Math. J. 30, 129–142 (1963)

    Article  MathSciNet  Google Scholar 

  48. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    Google Scholar 

  49. Shakerian, S., Vétois, J.: Sharp pointwise estimates for weighted critical \(p\)-Laplace equations. Nonlinear Anal. 206, 112236 (2021)

    Article  MathSciNet  Google Scholar 

  50. Shi, S., Xiao, J.: A tracing of the fractional temperature field. Sci. China Math. 60, 2303–2320 (2017)

    Article  MathSciNet  Google Scholar 

  51. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ (1971)

  52. Tuhola-Kujanpää, A., Varpanen, H.: The \(p\)-Laplacian with respect to measures. J. Math. Anal. Appl. 400, 86–95 (2013)

    Article  MathSciNet  Google Scholar 

  53. Turesson, B.O.: Nonlinear Potential Theory and Weighted Sobolev Spaces. Lecture Notes in Mathematics, vol. 1736. Springer, Berlin (2000)

  54. Vo, V- N., Doan, C- K., Nguyen, G-B.: A regularity result via fractional maximal operators for \(p\)-Laplace equations in weighted Lorentz spaces. Complex Var. Elliptic Equ., 1–19 (2021)

  55. Xiao, J.: Carleson embeddings for Sobolev spaces via heat equation. J. Differ. Equ. 224, 277–295 (2006)

    Article  MathSciNet  Google Scholar 

  56. Xiong, Q., Zhang, Z.: Gradient potential estimates for elliptic obstacle problems. J. Math. Anal. Appl. 495, 124698 (2021)

    Article  MathSciNet  Google Scholar 

  57. Xiong, Q., Zhang, Z., Ma, L.: Gradient potential estimates in elliptic obstacle problems with Orlicz growth. Calc. Var. Partial Differ. Equ. 61, Paper No. 83 (2022)

  58. Xiong, Q., Zhang, Z., Ma, L.: Riesz potential estimates for problems with Orlicz growth. J. Math. Anal. Appl. 515, 126448 (2022)

    Article  MathSciNet  Google Scholar 

  59. Xu, X.: Some results on functional capacity and their applications to \(p\)-Laplacian problems involving measure data. Nonlinear Anal. 27, 17–36 (1996)

    Article  MathSciNet  Google Scholar 

  60. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1980)

    Google Scholar 

  61. Zhai, Z.: Carleson measure problems for parabolic Bergman spaces and homogeneous Sobolev spaces. Nonlinear Anal. 73, 2611–2630 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project was completed during the research stays of the 1st & 3rd authors under supervision of the 2nd author at Memorial University with the support of: National Natural Science Foundation of China (Grant Nos. 11701160, 11871100, 12071229); NSERC of Canada (#202979); MUN’s SBM-Fund (#214311); Tianjin postgraduate research and innovation project (Grant No. 2021YJSB016); China Scholarship Council (Grant Nos. 202108420099, 202006200119).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Xiao, J. & Xiong, Q. Toward Weighted Lorentz–Sobolev Capacities from Caffarelli–Silvestre Extensions. J Geom Anal 34, 124 (2024). https://doi.org/10.1007/s12220-024-01569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-024-01569-x

Keywords

Mathematics Subject Classification

Navigation