Skip to main content
Log in

A New Conformal Heat Flow of Harmonic Maps

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We introduce and study a conformal heat flow of harmonic maps defined by an evolution equation for a pair consisting of a map and a conformal factor of metric on the two-dimensional domain. This flow is designed to postpone finite time singularity but does not get rid of possibility of bubble forming. We show that Struwe type global weak solution exists, which is smooth except at most finitely many points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. Lond. Math. Soc. 10(1), 1–68 (1978). https://doi.org/10.1112/blms/10.1.1

    Article  MathSciNet  MATH  Google Scholar 

  2. Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc. 20(5), 385–524 (1988). https://doi.org/10.1112/blms/20.5.385

    Article  MathSciNet  MATH  Google Scholar 

  3. Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. 113(1), 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  4. Schoen, R.M.: Analytic aspects of the harmonic map problem. In: Seminar on Nonlinear Partial Differential Equations, 1984, pp. 321–358. Springer (1984)

  5. Jost, J.: Riemannian Geometry and Geometric Analysis, vol. 42005. Springer, Berlin (2008)

    MATH  Google Scholar 

  6. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété Riemannienne. C. R. Acad. Sci. I Paris Sér. 312(8), 591–596 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Parker, T.H.: Bubble tree convergence for harmonic maps. J. Differ. Geom. 44(3), 595–633 (1996). https://doi.org/10.4310/jdg/1214459224

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin, F., Wang, C.: Energy identity of harmonic map flows from surfaces at finite singular time. Calc. Var. Partial Differ. Equ. 6(4), 369–380 (1998). https://doi.org/10.1007/s005260050095

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Tian, G.: Compactification of moduli space of harmonic mappings. Comment. Math. Helv. 74(2), 201–237 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Riviere, T.: Conservation laws for conformally invariant variational problems. Invent. math. 168(1), 1–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhu, M.: Harmonic maps from degenerating Riemann surfaces. Math. Z. 264(1), 63 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, L., Li, Y., Wang, Y.: The refined analysis on the convergence behavior of harmonic map sequence from cylinders. J. Geom. Anal. 22(4), 942–963 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86(1), 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  14. Struwe, M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(1), 558–581 (1985). https://doi.org/10.1007/BF02567432

    Article  MathSciNet  MATH  Google Scholar 

  15. Coron, J.-M., Ghidaglia, J.-M.: Équations aux dérivées partielles. Explosion en temps fini pour le flot des applications harmoniques. C. r. Acad. sci. 1 308(12), 339–344 (1989)

    MATH  Google Scholar 

  16. Chen, Y., Ding, W.-Y.: Blow-up and global existence for heat flows of harmonic maps. In: Selected Papers of Weiyue Ding, pp. 169–180. World Scientific, Singapore (1990)

  17. Soyeur, A.: A global existence result for the heat flow of harmonic maps. Commun. Partial Differ. Equ. 15(2), 237–244 (1990). https://doi.org/10.1080/03605309908820685

    Article  MathSciNet  MATH  Google Scholar 

  18. Freire, A.: Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differ. Equ. 3(1), 95–105 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Freire, A.: Uniqueness for the harmonic map flow from surfaces to general targets. Comment. Math. Helv. 70(1), 310–338 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Topping, P.M.: Rigidity in the harmonic map heat flow. J. Differ. Geom. 45(3), 593–610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Topping, P.: Reverse bubbling and nonuniqueness in the harmonic map flow. Int. Math. Res. Not. 2002(10), 505–520 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Topping, P.: Repulsion and quantization in almost-harmonic maps, and asymptotics of the harmonic map flow. Ann. Math. 159, 465–534 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Topping, P.: Winding behaviour of finite-time singularities of the harmonic map heat flow. Math. Z. 247(2), 279–302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, F., Wang, C.: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific, Singapore (2008). https://doi.org/10.1142/6679

    Book  MATH  Google Scholar 

  25. Wang, C., Huang, T.: On uniqueness of heat flow of harmonic maps. Indiana Univ. Math. J. 65, 1525–1546 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, K.-C., Ding, W.Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36(2), 507–515 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Raphaël, P., Schweyer, R.: Quantized slow blow-up dynamics for the corotational energy-critical harmonic heat flow. Anal. PDE 7(8), 1713–1805 (2014). https://doi.org/10.2140/apde.2014.7.1713

    Article  MathSciNet  MATH  Google Scholar 

  28. Dávila, J., Del Pino, M., Wei, J.: Singularity formation for the two-dimensional harmonic map flow into \(S^2\). Invent. math. 219(2), 345–466 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ding, W., Li, J., Liu, Q.: Evolution of minimal torus in Riemannian manifolds. Invent. math. 165, 225–242 (2006). https://doi.org/10.1007/s00222-005-0491-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Rupflin, M.: Flowing maps to minimal surfaces: existence and uniqueness of solutions. Ann. Inst. Henri Poincaré C Anal. Non Linéaire 31, 349–368 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rupflin, M., Topping, P.M.: Flowing maps to minimal surfaces. Am. J. Math. 138(4), 1095–1115 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rupflin, M., Topping, P.M., Zhu, M.: Asymptotics of the Teichmüller harmonic map flow. Adv. Math. 244, 874–893 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rupflin, M., Topping, P.M.: Teichmüller harmonic map flow into nonpositively curved targets. J. Differ. Geom. 108(1), 135–184 (2018)

    Article  MATH  Google Scholar 

  34. Huxol, T., Rupflin, M., Topping, P.M.: Refined asymptotics of the Teichmüller harmonic map flow into general targets. Calc. Var. Partial Differ. Equ. 55(4), 1–25 (2016)

    Article  MATH  Google Scholar 

  35. Rupflin, M., Topping, P.M.: Global weak solutions of the Teichmüller harmonic map flow into general targets. Anal. PDE 12(3), 815–842 (2019). https://doi.org/10.2140/apde.2019.12.815

    Article  MathSciNet  MATH  Google Scholar 

  36. Müller, R.: Ricci flow coupled with harmonic map flow. Ann. Sci. Ecole Norm. Supér. 45, 101–142 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Williams, M.B.: Results on coupled Ricci and harmonic map flows. Adv. Geom. 15(1), 7–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Buzano, R., Rupflin, M.: Smooth long-time existence of Harmonic Ricci Flow on surfaces. J. Lond. Math. Soc. 95(1), 277–304 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Huang, S., Tam, L.-F.: Short time existence for harmonic map heat flow with time-dependent metrics. J. Geom. Anal. 32, 287 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mantegazza, C., Martinazzi, L.: A note on quasilinear parabolic equations on manifolds. Ann. Scuola Norm. Super. Pisa-Classe Sci. 11(4), 857–874 (2012)

    MathSciNet  MATH  Google Scholar 

  41. Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  42. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  43. Wang, W., Wei, D., Zhang, Z.: Energy identity for approximate harmonic maps from surfaces to general targets. J. Funct. Anal. 272(2), 776–803 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thanks Armin Schikorra and Thomas Parker for valuable comments and advice. The author also thank to the referee for his careful reading and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woongbae Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, W. A New Conformal Heat Flow of Harmonic Maps. J Geom Anal 33, 376 (2023). https://doi.org/10.1007/s12220-023-01432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01432-5

Keywords

Mathematics Subject Classification

Navigation