Skip to main content
Log in

The Sub-Riemannian Geometry of Screw Motions with Constant Pitch

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider a family of Riemannian manifolds M such that for each unit speed geodesic \(\varvec{\gamma } \) of M there exists a distinguished bijective correspondence \(\varvec{L}\) between infinitesimal translations along \(\varvec{\gamma } \) and infinitesimal rotations around it. The simplest examples are \({\mathbb {R}}^{3}\), \(\varvec{S}^{3}\) and hyperbolic 3-space, with \(\varvec{L}\) defined in terms of the cross product. More generally, M is a connected compact semisimple Lie group, or its non-compact dual, or Euclidean space acted on transitively by some group which is contained properly in the full group of rigid motions. Let G be the identity component of the isometry group of M. A curve in G may be thought of as a motion of a body in M. Given \({\varvec{\lambda }} \in {\mathbb {R}}\), we define a left invariant distribution on G accounting for infinitesimal roto-translations of M of pitch \(\varvec{\lambda }\). We give conditions for the controllability of the associated control system on G and find explicitly all the geodesics of the natural sub-Riemannian structure. We also study a similar system on \( {\mathbb {R}}^{7}\rtimes SO\left( 7\right) \) involving the octonionic cross product. In an appendix we give a friendly presentation of the non-compact dual of a compact classical group, as a set of “small rotations”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev, A., Barilari, D., Boscain, U.: A Comprehensive Introduction to Sub-Riemannian Geometry. From the Hamiltonian Viewpoint. With an Appendix by Igor Zelenko. Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (2020)

    MATH  Google Scholar 

  2. Agrachev, A., Sachkov, Y.: Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences. Control Theory and Optimization, II, 87th edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  3. Alekseevsky, D.: Shortest and straightest geodesics in sub-Riemannian geometry. J. Geom. Phys. 155(22), 103713 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anarella, M., Salvai, M.: Infinitesimally helicoidal motions with fixed pitch of oriented geodesics of a space form. Acta Appl. Math. 179, 19 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Autenried, C., Markina, I.: Sub-Riemannian geometry of Stiefel manifolds. SIAM J. Control Optim. 52, 939–959 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berge, E., Grong, E.: On \(\rm G _2\) and sub-Riemannian model spaces of step and rank three. Math. Z. 298, 1853–1885 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boscain, U., Chambrion, T., Gauthier, J.-P.: On the \(K+P\) problem for a three-level quantum system: optimality implies resonance. J. Dyn. Control Syst. 8(4), 547–572 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boscain, U., Rossi, F.: Invariant Carnot–Caratheodory metrics on \(S^{3}\), \(SO\left(3\right) \), \(SL\left(2\right) \), and lens spaces. SIAM J. Control Optim. 47, 1851–1878 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brockett, R.W.: Explicitly solvable control problems with nonholonomic constraints. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 1, pp. 13–16 (1999)

  10. Chemtov, M., Karigiannis, S.: Observations about the Lie algebra \( {\mathfrak{g} }_{2}\subset s{\mathfrak{o} }\left(7\right) \), associative 3-planes, and \(s{\mathfrak{o} }\left(4\right) \) subalgebras. Expo. Math. 40, 845–869 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Domokos, A., Krauel, M., Pigno, V., Shanbrom, C., VanValkenburgh, M.: Length spectra of sub-Riemannian metrics on compact Lie groups. Pacific J. Math. 296(2), 321–340 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fontanals, C.D.: Notes on \(G_{2}\): the Lie algebra and the Lie group. Differ. Geom. Appl. 57, 23–74 (2018)

    Article  MATH  Google Scholar 

  13. Emmanuele, D., Salvai, M., Vittone, F.: Möbius fluid dynamics on the unitary groups. Regul. Chaotic Dyn. 27, 333–351 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, 194th edn. Springer, New York (2000)

    MATH  Google Scholar 

  15. Eschenburg, J.-H.: Geometry of Octonions. University of Augsburg, Augsburg (2018)

    Google Scholar 

  16. Molina, M.G., Grong, E.: Riemannian and sub-Riemannian geodesic flows. J. Geom. Anal. 27, 1260–1273 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grong, E.: Model spaces in sub-Riemannian geometry. Commun. Anal. Geom. 29, 77–113 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harvey, F.R.: Spinors and Calibrations. Perspectives in Mathematics, 9th edn. Academic Press, Inc., Boston (1990)

    MATH  Google Scholar 

  19. Hüper, K., Markina, I., Leite, F.S.: A Lagrangian approach to extremal curves on Stiefel manifolds. J. Geom. Mech. 13, 55–72 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, 52nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  21. Jurdjevic, V., Markina, I., Leite, F.S.: Extremal curves on Stiefel and Grassmann manifolds. J. Geom. Anal. 30, 3948–3978 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications, 91st edn. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  23. Neretin, Y.A.: Pseudo-Riemannian symmetric spaces: uniform realizations and open embeddings into Grassmannians. J. Math. Sci. (N. Y.) 107, 4248–4264 (2001)

    Article  MATH  Google Scholar 

  24. Ovando, G.: Lie algebras with ad-invariant metrics: a survey-guide. Rend. Semin. Mat. Univ. Politec. Torino 74, 243–268 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Podobryaev, A.: Homogeneous geodesics in sub-Riemannian geometry. ESAIM: COCV 29, 11 (2023)

    MathSciNet  MATH  Google Scholar 

  26. Sachkov, Y.: Left-invariant optimal control problems on Lie groups: classification and problems integrable by elementary functions. Russian Math. Surv. 77(1), 99–163 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Salamon, D., Walpuski, Th.: Notes on the octonions. In: Proceedings of the Gokova Geometry-Topology Conference 2016, pp. 1–85, Gokova Geometry/Topology Conference (GGT), Gokova, (2017)

  28. Salvai, M.: A split special Lagrangian calibration associated with frame vorticity. Adv. Calc. Var. (2023). https://doi.org/10.1515/acv-2022-0036

    Article  Google Scholar 

  29. Tóth, G.Z.: On Lagrangian and Hamiltonian systems with homogeneous trajectories. J. Phys. A 43, 385206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas and Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba. The third author thanks Jorge Lauret, who many years ago made him aware of the fact that dimension 3 is not necessary for having a nice correspondence L as in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Salvai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hulett, E., Moas, R.P. & Salvai, M. The Sub-Riemannian Geometry of Screw Motions with Constant Pitch. J Geom Anal 33, 373 (2023). https://doi.org/10.1007/s12220-023-01430-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12220-023-01430-7

Keywords

Mathematics Subject Classification

Navigation